Cargando…

Free radical sensors based on inner-cutting graphene field-effect transistors

Due to ultra-high reactivity, direct determination of free radicals, especially hydroxyl radical (•OH) with ultra-short lifetime, by field-effect transistor (FET) sensors remains a challenge, which hampers evaluating the role that free radical plays in physiological and pathological processes. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhen, Yi, Kongyang, Lin, Qiuyuan, Yang, Lei, Chen, Xiaosong, Chen, Hui, Liu, Yunqi, Wei, Dacheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449349/
https://www.ncbi.nlm.nih.gov/pubmed/30948705
http://dx.doi.org/10.1038/s41467-019-09573-4
Descripción
Sumario:Due to ultra-high reactivity, direct determination of free radicals, especially hydroxyl radical (•OH) with ultra-short lifetime, by field-effect transistor (FET) sensors remains a challenge, which hampers evaluating the role that free radical plays in physiological and pathological processes. Here, we develop a •OH FET sensor with a graphene channel functionalized by metal ion indicators. At the electrolyte/graphene interface, highly reactive •OH cuts the cysteamine to release the metal ions, resulting in surface charge de-doping and a current response. By this inner-cutting strategy, the •OH is selectively detected with a concentration down to 10(−9) M. Quantitative metal ion doping enables modulation of the device sensitivity and a quasi-quantitative detection of •OH generated in aqueous solution or from living cells. Owing to its high sensitivity, selectivity, real-time label-free response, capability for quasi-quantitative detection and user-friendly portable feature, it is valuable in biological research, human health, environmental monitoring, etc.