Cargando…

A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius

Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptiona...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Kun, Sybers, David, Maklad, Hassan Ramadan, Lemmens, Liesbeth, Lewyllie, Charlotte, Zhou, Xiaoxiao, Schult, Frank, Bräsen, Christopher, Siebers, Bettina, Valegård, Karin, Lindås, Ann-Christin, Peeters, Eveline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449355/
https://www.ncbi.nlm.nih.gov/pubmed/30948713
http://dx.doi.org/10.1038/s41467-019-09479-1
_version_ 1783408826868826112
author Wang, Kun
Sybers, David
Maklad, Hassan Ramadan
Lemmens, Liesbeth
Lewyllie, Charlotte
Zhou, Xiaoxiao
Schult, Frank
Bräsen, Christopher
Siebers, Bettina
Valegård, Karin
Lindås, Ann-Christin
Peeters, Eveline
author_facet Wang, Kun
Sybers, David
Maklad, Hassan Ramadan
Lemmens, Liesbeth
Lewyllie, Charlotte
Zhou, Xiaoxiao
Schult, Frank
Bräsen, Christopher
Siebers, Bettina
Valegård, Karin
Lindås, Ann-Christin
Peeters, Eveline
author_sort Wang, Kun
collection PubMed
description Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadR(Sa)) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius. Functional and structural analyses show that FadR(Sa) binds to DNA at semi-palindromic recognition sites in two distinct stoichiometric binding modes depending on the operator sequence. Genome-wide transcriptomic and chromatin immunoprecipitation analyses demonstrate that the protein binds to only four genomic sites, acting as a repressor of a 30-kb gene cluster comprising 23 open reading frames encoding lipases and β-oxidation enzymes. Fatty acyl-CoA molecules cause dissociation of FadR(Sa) binding by inducing conformational changes in the protein. Our results indicate that, despite its similarity in overall structure to bacterial TetR-family FadR regulators, FadR(Sa) displays a different acyl-CoA binding mode and a distinct regulatory mechanism.
format Online
Article
Text
id pubmed-6449355
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64493552019-04-08 A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius Wang, Kun Sybers, David Maklad, Hassan Ramadan Lemmens, Liesbeth Lewyllie, Charlotte Zhou, Xiaoxiao Schult, Frank Bräsen, Christopher Siebers, Bettina Valegård, Karin Lindås, Ann-Christin Peeters, Eveline Nat Commun Article Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadR(Sa)) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius. Functional and structural analyses show that FadR(Sa) binds to DNA at semi-palindromic recognition sites in two distinct stoichiometric binding modes depending on the operator sequence. Genome-wide transcriptomic and chromatin immunoprecipitation analyses demonstrate that the protein binds to only four genomic sites, acting as a repressor of a 30-kb gene cluster comprising 23 open reading frames encoding lipases and β-oxidation enzymes. Fatty acyl-CoA molecules cause dissociation of FadR(Sa) binding by inducing conformational changes in the protein. Our results indicate that, despite its similarity in overall structure to bacterial TetR-family FadR regulators, FadR(Sa) displays a different acyl-CoA binding mode and a distinct regulatory mechanism. Nature Publishing Group UK 2019-04-04 /pmc/articles/PMC6449355/ /pubmed/30948713 http://dx.doi.org/10.1038/s41467-019-09479-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wang, Kun
Sybers, David
Maklad, Hassan Ramadan
Lemmens, Liesbeth
Lewyllie, Charlotte
Zhou, Xiaoxiao
Schult, Frank
Bräsen, Christopher
Siebers, Bettina
Valegård, Karin
Lindås, Ann-Christin
Peeters, Eveline
A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
title A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
title_full A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
title_fullStr A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
title_full_unstemmed A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
title_short A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
title_sort tetr-family transcription factor regulates fatty acid metabolism in the archaeal model organism sulfolobus acidocaldarius
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449355/
https://www.ncbi.nlm.nih.gov/pubmed/30948713
http://dx.doi.org/10.1038/s41467-019-09479-1
work_keys_str_mv AT wangkun atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT sybersdavid atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT makladhassanramadan atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT lemmensliesbeth atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT lewylliecharlotte atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT zhouxiaoxiao atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT schultfrank atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT brasenchristopher atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT siebersbettina atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT valegardkarin atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT lindasannchristin atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT peeterseveline atetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT wangkun tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT sybersdavid tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT makladhassanramadan tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT lemmensliesbeth tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT lewylliecharlotte tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT zhouxiaoxiao tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT schultfrank tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT brasenchristopher tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT siebersbettina tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT valegardkarin tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT lindasannchristin tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius
AT peeterseveline tetrfamilytranscriptionfactorregulatesfattyacidmetabolisminthearchaealmodelorganismsulfolobusacidocaldarius