Cargando…

Counting Linear Extensions: Parameterizations by Treewidth

We consider the [Formula: see text] -complete problem of counting the number of linear extensions of a poset [Formula: see text] ; a fundamental problem in order theory with applications in a variety of distinct areas. In particular, we study the complexity of [Formula: see text] parameterized by th...

Descripción completa

Detalles Bibliográficos
Autores principales: Eiben, E., Ganian, R., Kangas, K., Ordyniak, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449496/
https://www.ncbi.nlm.nih.gov/pubmed/31007326
http://dx.doi.org/10.1007/s00453-018-0496-4
_version_ 1783408860199911424
author Eiben, E.
Ganian, R.
Kangas, K.
Ordyniak, S.
author_facet Eiben, E.
Ganian, R.
Kangas, K.
Ordyniak, S.
author_sort Eiben, E.
collection PubMed
description We consider the [Formula: see text] -complete problem of counting the number of linear extensions of a poset [Formula: see text] ; a fundamental problem in order theory with applications in a variety of distinct areas. In particular, we study the complexity of [Formula: see text] parameterized by the well-known decompositional parameter treewidth for two natural graphical representations of the input poset, i.e., the cover and the incomparability graph. Our main result shows that [Formula: see text] is fixed-parameter intractable parameterized by the treewidth of the cover graph. This resolves an open problem recently posed in the Dagstuhl seminar on Exact Algorithms. On the positive side we show that [Formula: see text] becomes fixed-parameter tractable parameterized by the treewidth of the incomparability graph.
format Online
Article
Text
id pubmed-6449496
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-64494962019-04-17 Counting Linear Extensions: Parameterizations by Treewidth Eiben, E. Ganian, R. Kangas, K. Ordyniak, S. Algorithmica Article We consider the [Formula: see text] -complete problem of counting the number of linear extensions of a poset [Formula: see text] ; a fundamental problem in order theory with applications in a variety of distinct areas. In particular, we study the complexity of [Formula: see text] parameterized by the well-known decompositional parameter treewidth for two natural graphical representations of the input poset, i.e., the cover and the incomparability graph. Our main result shows that [Formula: see text] is fixed-parameter intractable parameterized by the treewidth of the cover graph. This resolves an open problem recently posed in the Dagstuhl seminar on Exact Algorithms. On the positive side we show that [Formula: see text] becomes fixed-parameter tractable parameterized by the treewidth of the incomparability graph. Springer US 2018-09-04 2019 /pmc/articles/PMC6449496/ /pubmed/31007326 http://dx.doi.org/10.1007/s00453-018-0496-4 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Eiben, E.
Ganian, R.
Kangas, K.
Ordyniak, S.
Counting Linear Extensions: Parameterizations by Treewidth
title Counting Linear Extensions: Parameterizations by Treewidth
title_full Counting Linear Extensions: Parameterizations by Treewidth
title_fullStr Counting Linear Extensions: Parameterizations by Treewidth
title_full_unstemmed Counting Linear Extensions: Parameterizations by Treewidth
title_short Counting Linear Extensions: Parameterizations by Treewidth
title_sort counting linear extensions: parameterizations by treewidth
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449496/
https://www.ncbi.nlm.nih.gov/pubmed/31007326
http://dx.doi.org/10.1007/s00453-018-0496-4
work_keys_str_mv AT eibene countinglinearextensionsparameterizationsbytreewidth
AT ganianr countinglinearextensionsparameterizationsbytreewidth
AT kangask countinglinearextensionsparameterizationsbytreewidth
AT ordyniaks countinglinearextensionsparameterizationsbytreewidth