Cargando…
Automatic classification of cells in microscopic fecal images using convolutional neural networks
The analysis of fecal-type components for clinical diagnosis is important. The main examination involves the counting of red blood cells (RBCs), white blood cells (WBCs), and molds under the microscopic. With the development of machine vision, some vision-based detection schemes have been proposed....
Autores principales: | Du, Xiaohui, Liu, Lin, Wang, Xiangzhou, Ni, Guangming, Zhang, Jing, hao, Ruqian, Liu, Juanxiu, Liu, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449518/ https://www.ncbi.nlm.nih.gov/pubmed/30872411 http://dx.doi.org/10.1042/BSR20182100 |
Ejemplares similares
-
Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN
por: Zhang, Jing, et al.
Publicado: (2021) -
Trichomonas Detection in Leucorrhea Based on VIBE Method
por: Du, Xiaohui, et al.
Publicado: (2019) -
CGUN-2A: Deep Graph Convolutional Network via Contrastive Learning for Large-Scale Zero-Shot Image Classification
por: Li, Liangwei, et al.
Publicado: (2022) -
Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics
por: Zhao, Jiaxi, et al.
Publicado: (2023) -
Morphological components detection for super-depth-of-field bio-micrograph based on deep learning
por: Du, Xiaohui, et al.
Publicado: (2021)