Cargando…
Assessment of Dysarthria Using One-Word Speech Recognition with Hidden Markov Models
BACKGROUND: The gold standard in dysarthria assessment involves subjective analysis by a speech–language pathologist (SLP). We aimed to investigate the feasibility of dysarthria assessment using automatic speech recognition. METHODS: We developed an automatic speech recognition based software to ass...
Autores principales: | Lee, Seung Hak, Kim, Minje, Seo, Han Gil, Oh, Byung-Mo, Lee, Gangpyo, Leigh, Ja-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Academy of Medical Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449601/ https://www.ncbi.nlm.nih.gov/pubmed/30950253 http://dx.doi.org/10.3346/jkms.2019.34.e108 |
Ejemplares similares
-
Speech Signal Analysis and Pattern Recognition in Diagnosis of Dysarthria
por: Thoppil, Minu George, et al.
Publicado: (2017) -
Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model
por: Selvaraj, Lokesh, et al.
Publicado: (2014) -
Rehabilitation of impaired speech function (dysarthria, dysglossia)
por: Schröter-Morasch, Heidrun, et al.
Publicado: (2005) -
Variables associated with speech and language therapy time for aphasia, apraxia of speech and dysarthria
por: Cera, Maysa Luchesi, et al.
Publicado: (2019) -
Optimising Speaker-Dependent Feature Extraction Parameters to Improve Automatic Speech Recognition Performance for People with Dysarthria
por: Marini, Marco, et al.
Publicado: (2021)