Cargando…
Latent Model-Based Clustering for Biological Discovery
LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an...
Autores principales: | Bing, Xin, Bunea, Florentina, Royer, Martin, Das, Jishnu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449745/ https://www.ncbi.nlm.nih.gov/pubmed/30954780 http://dx.doi.org/10.1016/j.isci.2019.03.018 |
Ejemplares similares
-
ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for human cancers
por: Das, Jishnu, et al.
Publicado: (2015) -
Essential Regression: A generalizable framework for inferring causal latent factors from multi-omic datasets
por: Bing, Xin, et al.
Publicado: (2022) -
Latent Patient Cluster Discovery for Robust Future Forecasting and New-Patient Generalization
por: Qian, Ting, et al.
Publicado: (2016) -
Antibody Fc Glycosylation Discriminates Between Latent and Active Tuberculosis
por: Lu, Lenette L, et al.
Publicado: (2020) -
Optimal Bayesian estimators for latent variable cluster models
por: Rastelli, Riccardo, et al.
Publicado: (2017)