Cargando…
Understanding and predicting disease relationships through similarity fusion
MOTIVATION: Combining disease relationships across multiple biological levels could aid our understanding of common processes taking place in disease, potentially indicating opportunities for drug sharing. Here, we propose a similarity fusion approach which accounts for differences in information co...
Autores principales: | Oerton, Erin, Roberts, Ian, Lewis, Patrick S H, Guilliams, Tim, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449746/ https://www.ncbi.nlm.nih.gov/pubmed/30169824 http://dx.doi.org/10.1093/bioinformatics/bty754 |
Ejemplares similares
-
Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies
por: Oerton, Erin, et al.
Publicado: (2017) -
Correction to: Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies
por: Oerton, Erin, et al.
Publicado: (2019) -
Developments in toxicogenomics: understanding and predicting compound-induced toxicity from gene expression data
por: Alexander-Dann, Benjamin, et al.
Publicado: (2018) -
Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling
por: van Westen, Gerard J. P., et al.
Publicado: (2014) -
SKF-LDA: Similarity Kernel Fusion for Predicting lncRNA-Disease Association
por: Xie, Guobo, et al.
Publicado: (2019)