Cargando…
Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data
MOTIVATION: Association studies to discover links between genetic markers and phenotypes are central to bioinformatics. Methods of regularized regression, such as variants of the Lasso, are popular for this task. Despite the good predictive performance of these methods in the average case, they suff...
Autores principales: | Wang, Haohan, Lengerich, Benjamin J, Aragam, Bryon, Xing, Eric P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449749/ https://www.ncbi.nlm.nih.gov/pubmed/30184048 http://dx.doi.org/10.1093/bioinformatics/bty750 |
Ejemplares similares
-
Personalized regression enables sample-specific pan-cancer analysis
por: Lengerich, Benjamin J, et al.
Publicado: (2018) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
The joint lasso: high-dimensional regression for group structured data
por: Dondelinger, Frank, et al.
Publicado: (2018) -
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
por: Mathew, Boby, et al.
Publicado: (2022) -
The Linear Relationship Model with LASSO for Studying Stock Networks
por: Chen, Muzi, et al.
Publicado: (2022)