Cargando…
Robust prediction of clinical outcomes using cytometry data
MOTIVATION: Flow cytometry and mass cytometry are widely used to diagnose diseases and to predict clinical outcomes. When associating clinical features with cytometry data, traditional analysis methods require cell gating as an intermediate step, leading to information loss and susceptibility to bat...
Autores principales: | Hu, Zicheng, Glicksberg, Benjamin S, Butte, Atul J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449751/ https://www.ncbi.nlm.nih.gov/pubmed/30169745 http://dx.doi.org/10.1093/bioinformatics/bty768 |
Ejemplares similares
-
A robust and interpretable end-to-end deep learning model for cytometry data
por: Hu, Zicheng, et al.
Publicado: (2020) -
Application of Machine Learning for Cytometry Data
por: Hu, Zicheng, et al.
Publicado: (2022) -
Utility of routinely collected electronic health records data to support effectiveness evaluations in inflammatory bowel disease: a pilot study of tofacitinib
por: Rudrapatna, Vivek Ashok, et al.
Publicado: (2021) -
Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis
por: Norgeot, Beau, et al.
Publicado: (2019) -
Accuracy of medical billing data against the electronic health record in the measurement of colorectal cancer screening rates
por: Rudrapatna, Vivek A, et al.
Publicado: (2020)