Cargando…

Directed Assembly of Homopentameric Cholera Toxin B-Subunit Proteins into Higher-Order Structures Using Coiled-Coil Appendages

[Image: see text] The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein–protein interaction surfaces...

Descripción completa

Detalles Bibliográficos
Autores principales: Ross, James F., Wildsmith, Gemma C., Johnson, Michael, Hurdiss, Daniel L., Hollingsworth, Kristian, Thompson, Rebecca F., Mosayebi, Majid, Trinh, Chi H., Paci, Emanuele, Pearson, Arwen R., Webb, Michael E., Turnbull, W. Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449800/
https://www.ncbi.nlm.nih.gov/pubmed/30856321
http://dx.doi.org/10.1021/jacs.8b11480
Descripción
Sumario:[Image: see text] The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein–protein interaction surfaces makes it challenging to mimic natural assembly processes in artificial systems. Indeed, many successful computationally designed protein assemblies are prescreened for “designability”, limiting the choice of components. Here, we report a simple and pragmatic strategy to assemble chosen multisubunit proteins into more complex structures. A coiled-coil domain appended to one face of the pentameric cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular supra-molecular complexes. Analysis of a tubular structure determined by X-ray crystallography has revealed a hierarchical assembly process that displays features reminiscent of the polymorphic assembly of polyomavirus proteins. The approach provides a simple and straightforward method to direct the assembly of protein building blocks which present either termini on a single face of an oligomer. This scaffolding approach can be used to generate bespoke supramolecular assemblies of functional proteins. Additionally, structural resolution of the scaffolded assemblies highlight “native-state” forced protein–protein interfaces, which may prove useful as starting conformations for future computational design.