Cargando…
Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation
Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with transmitted light microscopy images to distinguis...
Autores principales: | Waisman, Ariel, La Greca, Alejandro, Möbbs, Alan M., Scarafía, María Agustina, Santín Velazque, Natalia L., Neiman, Gabriel, Moro, Lucía N., Luzzani, Carlos, Sevlever, Gustavo E., Guberman, Alejandra S., Miriuka, Santiago G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449871/ https://www.ncbi.nlm.nih.gov/pubmed/30880077 http://dx.doi.org/10.1016/j.stemcr.2019.02.004 |
Ejemplares similares
-
PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells
por: La Greca, Alejandro, et al.
Publicado: (2020) -
Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation
por: Neiman, Gabriel, et al.
Publicado: (2019) -
MicroRNA characterization in equine induced pluripotent stem cells
por: Moro, Lucia Natalia, et al.
Publicado: (2018) -
Identification of the miRNAome of early mesoderm progenitor cells and cardiomyocytes derived from human pluripotent stem cells
por: Garate, Ximena, et al.
Publicado: (2018) -
celldeath: A tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition
por: La Greca, Alejandro Damián, et al.
Publicado: (2021)