Cargando…
A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data
BACKGROUND: Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to r...
Autores principales: | Sun, Shiquan, Chen, Yabo, Liu, Yang, Shang, Xuequn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449882/ https://www.ncbi.nlm.nih.gov/pubmed/30953530 http://dx.doi.org/10.1186/s12918-019-0699-6 |
Ejemplares similares
-
Evaluation of read count based RNAseq analysis methods
por: Guo, Yan, et al.
Publicado: (2013) -
Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data
por: Griffiths, Jonathan A., et al.
Publicado: (2017) -
Comparison of visualization tools for single-cell RNAseq data
por: Cakir, Batuhan, et al.
Publicado: (2020) -
Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining
por: Alessandri, Luca, et al.
Publicado: (2021) -
A fast and robust protocol for metataxonomic analysis using RNAseq data
por: Cox, Jeremy W., et al.
Publicado: (2017)