Cargando…
FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs
BACKGROUND: Biological experiments have confirmed the association between miRNAs and various diseases. However, such experiments are costly and time consuming. Computational methods help select potential disease-related miRNAs to improve the efficiency of biological experiments. METHODS: In this wor...
Autores principales: | Li, Xiaoying, Lin, Yaping, Gu, Changlong, Yang, Jialiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449885/ https://www.ncbi.nlm.nih.gov/pubmed/30953512 http://dx.doi.org/10.1186/s12918-019-0696-9 |
Ejemplares similares
-
Improved Pre-miRNAs Identification Through Mutual Information of Pre-miRNA Sequences and Structures
por: Fu, Xiangzheng, et al.
Publicado: (2019) -
SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction
por: Li, Xiaoying, et al.
Publicado: (2018) -
Prediction of disease-related miRNAs by voting with multiple classifiers
por: Gu, Changlong, et al.
Publicado: (2023) -
CRISPRi for specific inhibition of miRNA clusters and miRNAs with high sequence homology
por: Drobna-Śledzińska, Monika, et al.
Publicado: (2022) -
miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells
por: Hua, Youjia, et al.
Publicado: (2011)