Cargando…
Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus ferrooxidans Biofilm Cells on Pyrite
Reactive oxygen species (ROS) cause oxidative stress and growth inhibition by inactivation of essential enzymes, DNA and lipid damage in microbial cells. Acid mine drainage (AMD) ecosystems are characterized by low pH values, enhanced levels of metal ions and low species abundance. Furthermore, meta...
Autores principales: | Bellenberg, Sören, Huynh, Dieu, Poetsch, Ansgar, Sand, Wolfgang, Vera, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450195/ https://www.ncbi.nlm.nih.gov/pubmed/30984136 http://dx.doi.org/10.3389/fmicb.2019.00592 |
Ejemplares similares
-
Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans?
por: Borilova, Sarka, et al.
Publicado: (2018) -
Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans
por: Hong, Fen-Fen, et al.
Publicado: (2013) -
A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
por: Kucera, Jiri, et al.
Publicado: (2020) -
Identification and Unusual Properties of the Master Regulator FNR in the Extreme Acidophile Acidithiobacillus ferrooxidans
por: Osorio, Héctor, et al.
Publicado: (2019) -
Effect of CO(2) Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus ferrooxidans
por: Esparza, Mario, et al.
Publicado: (2019)