Cargando…

Transformations and singularities of polarized curves

We study the limiting behaviour of Darboux and Calapso transforms of polarized curves in the conformal n-dimensional sphere when the polarization has a pole of first or second order at some point. We prove that for a pole of first order, as the singularity is approached, all Darboux transforms conve...

Descripción completa

Detalles Bibliográficos
Autor principal: Fuchs, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450603/
https://www.ncbi.nlm.nih.gov/pubmed/31007329
http://dx.doi.org/10.1007/s10455-018-9639-8
Descripción
Sumario:We study the limiting behaviour of Darboux and Calapso transforms of polarized curves in the conformal n-dimensional sphere when the polarization has a pole of first or second order at some point. We prove that for a pole of first order, as the singularity is approached, all Darboux transforms converge to the original curve and all Calapso transforms converge. For a pole of second order, a generic Darboux transform converges to the original curve while a Calapso transform has a limit point or a limit circle, depending on the value of the transformation parameter. In particular, our results apply to Darboux and Calapso transforms of isothermic surfaces when a singular umbilic with index [Formula: see text] or 1 is approached along a curvature line.