Cargando…
Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies
Current Hi-C analysis approaches are unable to account for reads that align to multiple locations, and hence underestimate biological signal from repetitive regions of genomes. We developed and validated mHi-C, a multi-read mapping strategy to probabilistically allocate Hi-C multi-reads. mHi-C exhib...
Autores principales: | Zheng, Ye, Ay, Ferhat, Keles, Sunduz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450682/ https://www.ncbi.nlm.nih.gov/pubmed/30702424 http://dx.doi.org/10.7554/eLife.38070 |
Ejemplares similares
-
FreeHi-C simulates high fidelity Hi-C data for benchmarking and data augmentation
por: Zheng, Ye, et al.
Publicado: (2019) -
Accurate identification of centromere locations in yeast genomes using Hi-C
por: Varoquaux, Nelle, et al.
Publicado: (2015) -
dcHiC detects differential compartments across multiple Hi-C datasets
por: Chakraborty, Abhijit, et al.
Publicado: (2022) -
MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data
por: Khakmardan, Saman, et al.
Publicado: (2020) -
Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D
por: Zheng, Ye, et al.
Publicado: (2022)