Cargando…

Optoelectronic control of single cells using organic photocapacitors

Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent condu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakešová, Marie, Silverå Ejneby, Malin, Đerek, Vedran, Schmidt, Tony, Gryszel, Maciej, Brask, Johan, Schindl, Rainer, Simon, Daniel T., Berggren, Magnus, Elinder, Fredrik, Głowacki, Eric Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450690/
https://www.ncbi.nlm.nih.gov/pubmed/30972364
http://dx.doi.org/10.1126/sciadv.aav5265
_version_ 1783409064182546432
author Jakešová, Marie
Silverå Ejneby, Malin
Đerek, Vedran
Schmidt, Tony
Gryszel, Maciej
Brask, Johan
Schindl, Rainer
Simon, Daniel T.
Berggren, Magnus
Elinder, Fredrik
Głowacki, Eric Daniel
author_facet Jakešová, Marie
Silverå Ejneby, Malin
Đerek, Vedran
Schmidt, Tony
Gryszel, Maciej
Brask, Johan
Schindl, Rainer
Simon, Daniel T.
Berggren, Magnus
Elinder, Fredrik
Głowacki, Eric Daniel
author_sort Jakešová, Marie
collection PubMed
description Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent conductor layers covered with a donor-acceptor bilayer of organic photoconductors. This device produces an open-circuit voltage in a physiological solution of 330 mV upon illumination using light in a tissue transparency window of 630 to 660 nm. We have performed electrophysiological recordings on Xenopus laevis oocytes, finding rapid (time constants, 50 μs to 5 ms) photoinduced transient changes in the range of 20 to 110 mV. We measure photoinduced opening of potassium channels, conclusively proving that the OEPC effectively depolarizes the cell membrane. Our results demonstrate that the OEPC can be a versatile nongenetic technique for optical manipulation of electrophysiology and currently represents one of the simplest and most stable and efficient optical stimulation solutions.
format Online
Article
Text
id pubmed-6450690
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-64506902019-04-10 Optoelectronic control of single cells using organic photocapacitors Jakešová, Marie Silverå Ejneby, Malin Đerek, Vedran Schmidt, Tony Gryszel, Maciej Brask, Johan Schindl, Rainer Simon, Daniel T. Berggren, Magnus Elinder, Fredrik Głowacki, Eric Daniel Sci Adv Research Articles Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent conductor layers covered with a donor-acceptor bilayer of organic photoconductors. This device produces an open-circuit voltage in a physiological solution of 330 mV upon illumination using light in a tissue transparency window of 630 to 660 nm. We have performed electrophysiological recordings on Xenopus laevis oocytes, finding rapid (time constants, 50 μs to 5 ms) photoinduced transient changes in the range of 20 to 110 mV. We measure photoinduced opening of potassium channels, conclusively proving that the OEPC effectively depolarizes the cell membrane. Our results demonstrate that the OEPC can be a versatile nongenetic technique for optical manipulation of electrophysiology and currently represents one of the simplest and most stable and efficient optical stimulation solutions. American Association for the Advancement of Science 2019-04-05 /pmc/articles/PMC6450690/ /pubmed/30972364 http://dx.doi.org/10.1126/sciadv.aav5265 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Jakešová, Marie
Silverå Ejneby, Malin
Đerek, Vedran
Schmidt, Tony
Gryszel, Maciej
Brask, Johan
Schindl, Rainer
Simon, Daniel T.
Berggren, Magnus
Elinder, Fredrik
Głowacki, Eric Daniel
Optoelectronic control of single cells using organic photocapacitors
title Optoelectronic control of single cells using organic photocapacitors
title_full Optoelectronic control of single cells using organic photocapacitors
title_fullStr Optoelectronic control of single cells using organic photocapacitors
title_full_unstemmed Optoelectronic control of single cells using organic photocapacitors
title_short Optoelectronic control of single cells using organic photocapacitors
title_sort optoelectronic control of single cells using organic photocapacitors
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450690/
https://www.ncbi.nlm.nih.gov/pubmed/30972364
http://dx.doi.org/10.1126/sciadv.aav5265
work_keys_str_mv AT jakesovamarie optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT silveraejnebymalin optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT đerekvedran optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT schmidttony optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT gryszelmaciej optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT braskjohan optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT schindlrainer optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT simondanielt optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT berggrenmagnus optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT elinderfredrik optoelectroniccontrolofsinglecellsusingorganicphotocapacitors
AT głowackiericdaniel optoelectroniccontrolofsinglecellsusingorganicphotocapacitors