Cargando…
Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450883/ https://www.ncbi.nlm.nih.gov/pubmed/30952873 http://dx.doi.org/10.1038/s41598-019-40927-6 |
_version_ | 1783409086604247040 |
---|---|
author | Gredell, Devin A. Schroeder, Amelia R. Belk, Keith E. Broeckling, Corey D. Heuberger, Adam L. Kim, Soo-Young King, D. Andy Shackelford, Steven D. Sharp, Julia L. Wheeler, Tommy L. Woerner, Dale R. Prenni, Jessica E. |
author_facet | Gredell, Devin A. Schroeder, Amelia R. Belk, Keith E. Broeckling, Corey D. Heuberger, Adam L. Kim, Soo-Young King, D. Andy Shackelford, Steven D. Sharp, Julia L. Wheeler, Tommy L. Woerner, Dale R. Prenni, Jessica E. |
author_sort | Gredell, Devin A. |
collection | PubMed |
description | Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a “one size fits all” approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5–99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef. |
format | Online Article Text |
id | pubmed-6450883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64508832019-04-10 Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data Gredell, Devin A. Schroeder, Amelia R. Belk, Keith E. Broeckling, Corey D. Heuberger, Adam L. Kim, Soo-Young King, D. Andy Shackelford, Steven D. Sharp, Julia L. Wheeler, Tommy L. Woerner, Dale R. Prenni, Jessica E. Sci Rep Article Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a “one size fits all” approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5–99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef. Nature Publishing Group UK 2019-04-05 /pmc/articles/PMC6450883/ /pubmed/30952873 http://dx.doi.org/10.1038/s41598-019-40927-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Gredell, Devin A. Schroeder, Amelia R. Belk, Keith E. Broeckling, Corey D. Heuberger, Adam L. Kim, Soo-Young King, D. Andy Shackelford, Steven D. Sharp, Julia L. Wheeler, Tommy L. Woerner, Dale R. Prenni, Jessica E. Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data |
title | Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data |
title_full | Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data |
title_fullStr | Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data |
title_full_unstemmed | Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data |
title_short | Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data |
title_sort | comparison of machine learning algorithms for predictive modeling of beef attributes using rapid evaporative ionization mass spectrometry (reims) data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450883/ https://www.ncbi.nlm.nih.gov/pubmed/30952873 http://dx.doi.org/10.1038/s41598-019-40927-6 |
work_keys_str_mv | AT gredelldevina comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT schroederameliar comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT belkkeithe comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT broecklingcoreyd comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT heubergeradaml comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT kimsooyoung comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT kingdandy comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT shackelfordstevend comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT sharpjulial comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT wheelertommyl comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT woernerdaler comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata AT prennijessicae comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata |