Cargando…

Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data

Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Gredell, Devin A., Schroeder, Amelia R., Belk, Keith E., Broeckling, Corey D., Heuberger, Adam L., Kim, Soo-Young, King, D. Andy, Shackelford, Steven D., Sharp, Julia L., Wheeler, Tommy L., Woerner, Dale R., Prenni, Jessica E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450883/
https://www.ncbi.nlm.nih.gov/pubmed/30952873
http://dx.doi.org/10.1038/s41598-019-40927-6
_version_ 1783409086604247040
author Gredell, Devin A.
Schroeder, Amelia R.
Belk, Keith E.
Broeckling, Corey D.
Heuberger, Adam L.
Kim, Soo-Young
King, D. Andy
Shackelford, Steven D.
Sharp, Julia L.
Wheeler, Tommy L.
Woerner, Dale R.
Prenni, Jessica E.
author_facet Gredell, Devin A.
Schroeder, Amelia R.
Belk, Keith E.
Broeckling, Corey D.
Heuberger, Adam L.
Kim, Soo-Young
King, D. Andy
Shackelford, Steven D.
Sharp, Julia L.
Wheeler, Tommy L.
Woerner, Dale R.
Prenni, Jessica E.
author_sort Gredell, Devin A.
collection PubMed
description Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a “one size fits all” approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5–99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef.
format Online
Article
Text
id pubmed-6450883
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64508832019-04-10 Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data Gredell, Devin A. Schroeder, Amelia R. Belk, Keith E. Broeckling, Corey D. Heuberger, Adam L. Kim, Soo-Young King, D. Andy Shackelford, Steven D. Sharp, Julia L. Wheeler, Tommy L. Woerner, Dale R. Prenni, Jessica E. Sci Rep Article Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a “one size fits all” approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5–99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef. Nature Publishing Group UK 2019-04-05 /pmc/articles/PMC6450883/ /pubmed/30952873 http://dx.doi.org/10.1038/s41598-019-40927-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gredell, Devin A.
Schroeder, Amelia R.
Belk, Keith E.
Broeckling, Corey D.
Heuberger, Adam L.
Kim, Soo-Young
King, D. Andy
Shackelford, Steven D.
Sharp, Julia L.
Wheeler, Tommy L.
Woerner, Dale R.
Prenni, Jessica E.
Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
title Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
title_full Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
title_fullStr Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
title_full_unstemmed Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
title_short Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data
title_sort comparison of machine learning algorithms for predictive modeling of beef attributes using rapid evaporative ionization mass spectrometry (reims) data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450883/
https://www.ncbi.nlm.nih.gov/pubmed/30952873
http://dx.doi.org/10.1038/s41598-019-40927-6
work_keys_str_mv AT gredelldevina comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT schroederameliar comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT belkkeithe comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT broecklingcoreyd comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT heubergeradaml comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT kimsooyoung comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT kingdandy comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT shackelfordstevend comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT sharpjulial comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT wheelertommyl comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT woernerdaler comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata
AT prennijessicae comparisonofmachinelearningalgorithmsforpredictivemodelingofbeefattributesusingrapidevaporativeionizationmassspectrometryreimsdata