Cargando…
On the computational complexity of curing non-stoquastic Hamiltonians
Quantum many-body systems whose Hamiltonians are non-stoquastic, i.e., have positive off-diagonal matrix elements in a given basis, are known to pose severe limitations on the efficiency of Quantum Monte Carlo algorithms designed to simulate them, due to the infamous sign problem. We study the compu...
Autores principales: | Marvian, Milad, Lidar, Daniel A., Hen, Itay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450938/ https://www.ncbi.nlm.nih.gov/pubmed/30952854 http://dx.doi.org/10.1038/s41467-019-09501-6 |
Ejemplares similares
-
Quantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealing
por: Ohzeki, Masayuki
Publicado: (2017) -
Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and its application to superconducting circuits
por: Mozgunov, Evgeny, et al.
Publicado: (2023) -
Complex Hamiltonian Dynamics
por: Bountis, Tassos, et al.
Publicado: (2012) -
Quantum hamiltonian complexity
por: Gharibian, Sevag, et al.
Publicado: (2015) -
Spin Hamiltonians in Magnets: Theories and Computations
por: Li, Xueyang, et al.
Publicado: (2021)