Cargando…

Cationic porphyrins with large side arm substituents as resonance light scattering ratiometric probes for specific recognition of nucleic acid G-quadruplexes

Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique—resonance light scat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Li-Ming, Cui, Yun-Xi, Zhu, Li-Na, Chu, Jun-Qing, Kong, De-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451126/
https://www.ncbi.nlm.nih.gov/pubmed/30715502
http://dx.doi.org/10.1093/nar/gkz064
Descripción
Sumario:Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique—resonance light scattering (RLS)-based ratiometric recognition. To achieve the RLS probing of G-quadruplexes in the important physiological pH range of 7.4-6.0, four water soluble cationic porphyrin derivatives, including an unreported octa-cationic porphyrin, with large side arm substituents were synthesized and developed as RLS probes. These RLS probes were demonstrated to work well for ratiometric recognition of G-quadruplexes with high specificity against single- and double-stranded DNAs, including long double-stranded ones. The working mechanism was speculated to be based on the RLS signal changes caused by porphyrin protonation that was promoted by the end-stacking of porphyrins on G-quadruplexes. This work adds an important member in G-quadruplex probe family, thus providing a useful tool for studies on G-quadruplex-related events concerning G-quadruplex formation, destruction and changes in size, shape and aggregation. As a proof-of-concept example of applications, the RLS probes were demonstrated to work well for label-free and sequence-specific sensing of microRNA. This work also provides a simple and useful way for the preparation of cationic porphyrins with high charges.