Cargando…
Non-intrusive high throughput automated data collection from the home cage
Automated home cage monitoring represents a key technology to collect animal activity information directly from the home cage. The availability of 24/7 cage data enables extensive and quantitative assessment of mouse behavior and activity over long periods of time than possible otherwise. When home...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451168/ https://www.ncbi.nlm.nih.gov/pubmed/30997429 http://dx.doi.org/10.1016/j.heliyon.2019.e01454 |
Sumario: | Automated home cage monitoring represents a key technology to collect animal activity information directly from the home cage. The availability of 24/7 cage data enables extensive and quantitative assessment of mouse behavior and activity over long periods of time than possible otherwise. When home cage monitoring is performed directly at the home cage rack, it is possible to leverage additional advantages, including, e.g., partial (or total) reduction of animal handling, no need for setting up external data collection system as well as not requiring dedicated labs and personnel to perform tests. In this work we introduce a home cage-home rack monitoring system that is capable of continuously detecting spontaneous animal activity occurring in the home cage directly from the home cage rack. The proposed system is based on an electrical capacitance sensing technology that enables non-intrusive and continuous home cage monitoring. We then present a few animal activity metrics that are validated via comparison against a video camera-based tracking system. The results show that the proposed home-cage monitoring system can provide animal activity metrics that are comparable to the ones derived via a conventional video tracking system, with the advantage of system scalability, limited amount of both data generated and computational capabilities required to derive metrics. |
---|