Cargando…
A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451317/ https://www.ncbi.nlm.nih.gov/pubmed/30858228 http://dx.doi.org/10.1242/dev.172411 |
_version_ | 1783409175244570624 |
---|---|
author | Mellor, Nathan Vaughan-Hirsch, John Kümpers, Britta M. C. Help-Rinta-Rahko, Hanna Miyashima, Shunsuke Mähönen, Ari Pekka Campilho, Ana King, John R. Bishopp, Anthony |
author_facet | Mellor, Nathan Vaughan-Hirsch, John Kümpers, Britta M. C. Help-Rinta-Rahko, Hanna Miyashima, Shunsuke Mähönen, Ari Pekka Campilho, Ana King, John R. Bishopp, Anthony |
author_sort | Mellor, Nathan |
collection | PubMed |
description | Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledons forces the vascular cylinder to develop a diarch pattern with two xylem poles. Molecular analyses and mathematical approaches have uncovered the regulatory circuit that propagates this initial auxin signal into a stable cellular pattern. The diarch pattern seen in Arabidopsis is relatively uncommon among flowering plants, with most species having between three and eight xylem poles. Here, we have used multiscale mathematical modelling to demonstrate that this regulatory module does not require a heterogeneous auxin input to specify the vascular pattern. Instead, the pattern can emerge dynamically, with its final form dependent upon spatial constraints and growth. The predictions of our simulations compare to experimental observations of xylem pole number across a range of species, as well as in transgenic systems in Arabidopsis in which we manipulate the size of the vascular cylinder. By considering the spatial constraints, our model is able to explain much of the diversity seen in different flowering plant species. |
format | Online Article Text |
id | pubmed-6451317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-64513172019-04-25 A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species Mellor, Nathan Vaughan-Hirsch, John Kümpers, Britta M. C. Help-Rinta-Rahko, Hanna Miyashima, Shunsuke Mähönen, Ari Pekka Campilho, Ana King, John R. Bishopp, Anthony Development Research Article Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledons forces the vascular cylinder to develop a diarch pattern with two xylem poles. Molecular analyses and mathematical approaches have uncovered the regulatory circuit that propagates this initial auxin signal into a stable cellular pattern. The diarch pattern seen in Arabidopsis is relatively uncommon among flowering plants, with most species having between three and eight xylem poles. Here, we have used multiscale mathematical modelling to demonstrate that this regulatory module does not require a heterogeneous auxin input to specify the vascular pattern. Instead, the pattern can emerge dynamically, with its final form dependent upon spatial constraints and growth. The predictions of our simulations compare to experimental observations of xylem pole number across a range of species, as well as in transgenic systems in Arabidopsis in which we manipulate the size of the vascular cylinder. By considering the spatial constraints, our model is able to explain much of the diversity seen in different flowering plant species. The Company of Biologists Ltd 2019-03-15 2019-03-15 /pmc/articles/PMC6451317/ /pubmed/30858228 http://dx.doi.org/10.1242/dev.172411 Text en © 2019. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Mellor, Nathan Vaughan-Hirsch, John Kümpers, Britta M. C. Help-Rinta-Rahko, Hanna Miyashima, Shunsuke Mähönen, Ari Pekka Campilho, Ana King, John R. Bishopp, Anthony A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
title | A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
title_full | A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
title_fullStr | A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
title_full_unstemmed | A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
title_short | A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
title_sort | core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451317/ https://www.ncbi.nlm.nih.gov/pubmed/30858228 http://dx.doi.org/10.1242/dev.172411 |
work_keys_str_mv | AT mellornathan acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT vaughanhirschjohn acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT kumpersbrittamc acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT helprintarahkohanna acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT miyashimashunsuke acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT mahonenaripekka acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT campilhoana acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT kingjohnr acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT bishoppanthony acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT mellornathan coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT vaughanhirschjohn coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT kumpersbrittamc coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT helprintarahkohanna coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT miyashimashunsuke coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT mahonenaripekka coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT campilhoana coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT kingjohnr coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies AT bishoppanthony coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies |