Cargando…

A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species

Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mellor, Nathan, Vaughan-Hirsch, John, Kümpers, Britta M. C., Help-Rinta-Rahko, Hanna, Miyashima, Shunsuke, Mähönen, Ari Pekka, Campilho, Ana, King, John R., Bishopp, Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451317/
https://www.ncbi.nlm.nih.gov/pubmed/30858228
http://dx.doi.org/10.1242/dev.172411
_version_ 1783409175244570624
author Mellor, Nathan
Vaughan-Hirsch, John
Kümpers, Britta M. C.
Help-Rinta-Rahko, Hanna
Miyashima, Shunsuke
Mähönen, Ari Pekka
Campilho, Ana
King, John R.
Bishopp, Anthony
author_facet Mellor, Nathan
Vaughan-Hirsch, John
Kümpers, Britta M. C.
Help-Rinta-Rahko, Hanna
Miyashima, Shunsuke
Mähönen, Ari Pekka
Campilho, Ana
King, John R.
Bishopp, Anthony
author_sort Mellor, Nathan
collection PubMed
description Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledons forces the vascular cylinder to develop a diarch pattern with two xylem poles. Molecular analyses and mathematical approaches have uncovered the regulatory circuit that propagates this initial auxin signal into a stable cellular pattern. The diarch pattern seen in Arabidopsis is relatively uncommon among flowering plants, with most species having between three and eight xylem poles. Here, we have used multiscale mathematical modelling to demonstrate that this regulatory module does not require a heterogeneous auxin input to specify the vascular pattern. Instead, the pattern can emerge dynamically, with its final form dependent upon spatial constraints and growth. The predictions of our simulations compare to experimental observations of xylem pole number across a range of species, as well as in transgenic systems in Arabidopsis in which we manipulate the size of the vascular cylinder. By considering the spatial constraints, our model is able to explain much of the diversity seen in different flowering plant species.
format Online
Article
Text
id pubmed-6451317
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Company of Biologists Ltd
record_format MEDLINE/PubMed
spelling pubmed-64513172019-04-25 A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species Mellor, Nathan Vaughan-Hirsch, John Kümpers, Britta M. C. Help-Rinta-Rahko, Hanna Miyashima, Shunsuke Mähönen, Ari Pekka Campilho, Ana King, John R. Bishopp, Anthony Development Research Article Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledons forces the vascular cylinder to develop a diarch pattern with two xylem poles. Molecular analyses and mathematical approaches have uncovered the regulatory circuit that propagates this initial auxin signal into a stable cellular pattern. The diarch pattern seen in Arabidopsis is relatively uncommon among flowering plants, with most species having between three and eight xylem poles. Here, we have used multiscale mathematical modelling to demonstrate that this regulatory module does not require a heterogeneous auxin input to specify the vascular pattern. Instead, the pattern can emerge dynamically, with its final form dependent upon spatial constraints and growth. The predictions of our simulations compare to experimental observations of xylem pole number across a range of species, as well as in transgenic systems in Arabidopsis in which we manipulate the size of the vascular cylinder. By considering the spatial constraints, our model is able to explain much of the diversity seen in different flowering plant species. The Company of Biologists Ltd 2019-03-15 2019-03-15 /pmc/articles/PMC6451317/ /pubmed/30858228 http://dx.doi.org/10.1242/dev.172411 Text en © 2019. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article
Mellor, Nathan
Vaughan-Hirsch, John
Kümpers, Britta M. C.
Help-Rinta-Rahko, Hanna
Miyashima, Shunsuke
Mähönen, Ari Pekka
Campilho, Ana
King, John R.
Bishopp, Anthony
A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
title A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
title_full A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
title_fullStr A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
title_full_unstemmed A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
title_short A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
title_sort core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451317/
https://www.ncbi.nlm.nih.gov/pubmed/30858228
http://dx.doi.org/10.1242/dev.172411
work_keys_str_mv AT mellornathan acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT vaughanhirschjohn acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT kumpersbrittamc acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT helprintarahkohanna acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT miyashimashunsuke acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT mahonenaripekka acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT campilhoana acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT kingjohnr acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT bishoppanthony acoremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT mellornathan coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT vaughanhirschjohn coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT kumpersbrittamc coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT helprintarahkohanna coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT miyashimashunsuke coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT mahonenaripekka coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT campilhoana coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT kingjohnr coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies
AT bishoppanthony coremechanismforspecifyingrootvascularpatterningcanreplicatetheanatomicalvariationseenindiverseplantspecies