Cargando…
Use of machine-learning algorithms to determine features of systolic blood pressure variability that predict poor outcomes in hypertensive patients
BACKGROUND: We re-analyzed data from the Systolic Blood Pressure Intervention Trial (SPRINT) trial to identify features of systolic blood pressure (SBP) variability that portend poor cardiovascular outcomes using a nonlinear machine-learning algorithm. METHODS: We included all patients who completed...
Autores principales: | Lacson, Ronilda C, Baker, Bowen, Suresh, Harini, Andriole, Katherine, Szolovits, Peter, Lacson, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452173/ https://www.ncbi.nlm.nih.gov/pubmed/30976397 http://dx.doi.org/10.1093/ckj/sfy049 |
Ejemplares similares
-
Prognostic Value of Blood Pressure Variability and Average Blood Pressure Levels in Patients With Hypertension and Diabetes
por: Parati, Gianfranco, et al.
Publicado: (2013) -
Ambulatory Blood Pressure Monitoring in the Diagnosis and Management of Hypertension
por: Grossman, Ehud
Publicado: (2013) -
The Role of Nocturnal Blood Pressure and Sleep Quality in Hypertension Management
por: Cappuccio, Francesco P
Publicado: (2020) -
Benefits of Tight Blood Pressure Control in Diabetic Patients With Hypertension: Importance of early and sustained implementation of effective treatment strategies
por: Parati, Gianfranco, et al.
Publicado: (2011) -
Diuretic Treatment of Hypertension
por: Grossman, Ehud, et al.
Publicado: (2011)