Cargando…

Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period

Human-centred AI/Robotics are quickly becoming important. Their core claim is that AI systems or robots must be designed and work for the benefits of humans with no harm or uneasiness. It essentially requires the realization of autonomy, sociality and their fusion at all levels of system organizatio...

Descripción completa

Detalles Bibliográficos
Autor principal: Kuniyoshi, Yasuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452254/
https://www.ncbi.nlm.nih.gov/pubmed/30852992
http://dx.doi.org/10.1098/rstb.2018.0031
_version_ 1783409274036158464
author Kuniyoshi, Yasuo
author_facet Kuniyoshi, Yasuo
author_sort Kuniyoshi, Yasuo
collection PubMed
description Human-centred AI/Robotics are quickly becoming important. Their core claim is that AI systems or robots must be designed and work for the benefits of humans with no harm or uneasiness. It essentially requires the realization of autonomy, sociality and their fusion at all levels of system organization, even beyond programming or pre-training. The biologically inspired core principle of such a system is described as the emergence and development of embodied behaviour and cognition. The importance of embodiment, emergence and continuous autonomous development is explained in the context of developmental robotics and dynamical systems view of human development. We present a hypothetical early developmental scenario that fills in the very beginning part of the comprehensive scenarios proposed in developmental robotics. Then our model and experiments on emergent embodied behaviour are presented. They consist of chaotic maps embedded in sensory–motor loops and coupled via embodiment. Behaviours that are consistent with embodiment and adaptive to environmental structure emerge within a few seconds without any external reward or learning. Next, our model and experiments on human fetal development are presented. A precise musculo-skeletal fetal body model is placed in a uterus model. Driven by spinal nonlinear oscillator circuits coupled together via embodiment, somatosensory signals are evoked and learned by a model of the cerebral cortex with 2.6 million neurons and 5.3 billion synapses. The model acquired cortical representations of self–body and multi-modal sensory integration. This work is important because it models very early autonomous development in realistic detailed human embodiment. Finally, discussions toward human-like cognition are presented including other important factors such as motivation, emotion, internal organs and genetic factors. This article is part of the theme issue ‘From social brains to social robots: applying neurocognitive insights to human–robot interaction’.
format Online
Article
Text
id pubmed-6452254
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-64522542019-04-18 Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period Kuniyoshi, Yasuo Philos Trans R Soc Lond B Biol Sci Articles Human-centred AI/Robotics are quickly becoming important. Their core claim is that AI systems or robots must be designed and work for the benefits of humans with no harm or uneasiness. It essentially requires the realization of autonomy, sociality and their fusion at all levels of system organization, even beyond programming or pre-training. The biologically inspired core principle of such a system is described as the emergence and development of embodied behaviour and cognition. The importance of embodiment, emergence and continuous autonomous development is explained in the context of developmental robotics and dynamical systems view of human development. We present a hypothetical early developmental scenario that fills in the very beginning part of the comprehensive scenarios proposed in developmental robotics. Then our model and experiments on emergent embodied behaviour are presented. They consist of chaotic maps embedded in sensory–motor loops and coupled via embodiment. Behaviours that are consistent with embodiment and adaptive to environmental structure emerge within a few seconds without any external reward or learning. Next, our model and experiments on human fetal development are presented. A precise musculo-skeletal fetal body model is placed in a uterus model. Driven by spinal nonlinear oscillator circuits coupled together via embodiment, somatosensory signals are evoked and learned by a model of the cerebral cortex with 2.6 million neurons and 5.3 billion synapses. The model acquired cortical representations of self–body and multi-modal sensory integration. This work is important because it models very early autonomous development in realistic detailed human embodiment. Finally, discussions toward human-like cognition are presented including other important factors such as motivation, emotion, internal organs and genetic factors. This article is part of the theme issue ‘From social brains to social robots: applying neurocognitive insights to human–robot interaction’. The Royal Society 2019-04-29 2019-03-11 /pmc/articles/PMC6452254/ /pubmed/30852992 http://dx.doi.org/10.1098/rstb.2018.0031 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Kuniyoshi, Yasuo
Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
title Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
title_full Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
title_fullStr Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
title_full_unstemmed Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
title_short Fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
title_sort fusing autonomy and sociality via embodied emergence and development of behaviour and cognition from fetal period
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452254/
https://www.ncbi.nlm.nih.gov/pubmed/30852992
http://dx.doi.org/10.1098/rstb.2018.0031
work_keys_str_mv AT kuniyoshiyasuo fusingautonomyandsocialityviaembodiedemergenceanddevelopmentofbehaviourandcognitionfromfetalperiod