Cargando…

The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines

The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-ba...

Descripción completa

Detalles Bibliográficos
Autor principal: Saelens, Xavier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452325/
https://www.ncbi.nlm.nih.gov/pubmed/30715367
http://dx.doi.org/10.1093/infdis/jiz003
Descripción
Sumario:The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-based immunity is largely accomplished by IgG and early stage clinical studies have demonstrated that the vaccine is safe. Yet M2e is considered a difficult target to develop as a vaccine: it does not offer sterilizing immunity and its mode of action relies on Fcγ receptor-mediated effector mechanisms, most likely in concert with alveolar macrophages. In a human challenge study with an H3N2 virus, treatment with a monoclonal M2e-specific human IgG was associated with a faster recovery compared to placebo treatment. If the universal influenza vaccine field incorporates this antigen into next generation vaccines, M2e could prove its merit when the next influenza pandemic strikes.