Cargando…

Generalized network dismantling

Finding an optimal subset of nodes in a network that is able to efficiently disrupt the functioning of a corrupt or criminal organization or contain an epidemic or the spread of misinformation is a highly relevant problem of network science. In this paper, we address the generalized network-dismantl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Xiao-Long, Gleinig, Niels, Helbing, Dirk, Antulov-Fantulin, Nino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452684/
https://www.ncbi.nlm.nih.gov/pubmed/30877241
http://dx.doi.org/10.1073/pnas.1806108116
Descripción
Sumario:Finding an optimal subset of nodes in a network that is able to efficiently disrupt the functioning of a corrupt or criminal organization or contain an epidemic or the spread of misinformation is a highly relevant problem of network science. In this paper, we address the generalized network-dismantling problem, which aims at finding a set of nodes whose removal from the network results in the fragmentation of the network into subcritical network components at minimal overall cost. Compared with previous formulations, we allow the costs of node removals to take arbitrary nonnegative real values, which may depend on topological properties such as node centrality or on nontopological features such as the price or protection level of a node. Interestingly, we show that nonunit costs imply a significantly different dismantling strategy. To solve this optimization problem, we propose a method which is based on the spectral properties of a node-weighted Laplacian operator and combine it with a fine-tuning mechanism related to the weighted vertex cover problem. The proposed method is applicable to large-scale networks with millions of nodes. It outperforms current state-of-the-art methods and opens more directions for understanding the vulnerability and robustness of complex systems.