Cargando…

Increasing population size can inhibit cumulative cultural evolution

The extent to which larger populations enhance cumulative cultural evolution (CCE) is contentious. We report a large-scale experiment (n = 543) that investigates the CCE of technology (paper planes and their flight distances) using a transmission-chain design. Population size was manipulated such th...

Descripción completa

Detalles Bibliográficos
Autores principales: Fay, Nicolas, De Kleine, Naomi, Walker, Bradley, Caldwell, Christine A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452720/
https://www.ncbi.nlm.nih.gov/pubmed/30872484
http://dx.doi.org/10.1073/pnas.1811413116
Descripción
Sumario:The extent to which larger populations enhance cumulative cultural evolution (CCE) is contentious. We report a large-scale experiment (n = 543) that investigates the CCE of technology (paper planes and their flight distances) using a transmission-chain design. Population size was manipulated such that participants could learn from the paper planes constructed by one, two, or four models from the prior generation. These social-learning conditions were compared with an asocial individual-learning condition in which individual participants made repeated attempts at constructing a paper plane, without having access to any planes produced by other participants. Larger populations generated greater variation in plane performance and gave participants access to better-adapted planes, but this did not enhance CCE. In fact, there was an inverse relationship between population size and CCE: plane flight distance did not improve over the experimental generations in the 2-Model and 4-Model conditions, but did improve over generations in the 1-Model social-learning condition. The incremental improvement in plane flight distance in the 1-Model social-learning condition was comparable to that in the Individual Learning condition, highlighting the importance of trial-and-error learning to artifact innovation and adaptation. An exploratory analysis indicated that the greater variation participants had access to in the larger populations may have overwhelmed their working memory and weakened their ability to selectively copy the best-adapted plane(s). We conclude that larger populations do not enhance artifact performance via CCE, and that it may be only under certain specific conditions that larger population sizes enhance CCE.