Cargando…

Magnetoelastic hybrid excitations in CeAuAl(3)

Nearly a century of research has established the Born–Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born–Oppenheimer approximation are at the heart of magneto-elast...

Descripción completa

Detalles Bibliográficos
Autores principales: Čermák, Petr, Schneidewind, Astrid, Liu, Benqiong, Koza, Michael Marek, Franz, Christian, Schönmann, Rudolf, Sobolev, Oleg, Pfleiderer, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452737/
https://www.ncbi.nlm.nih.gov/pubmed/30894488
http://dx.doi.org/10.1073/pnas.1819664116
Descripción
Sumario:Nearly a century of research has established the Born–Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born–Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4 [Formula: see text] electron states, and conduction electrons in the paramagnetic regime of [Formula: see text] , an archetypal Kondo lattice compound. We identify two distinct magneto-elastic hybrid excitations that form even though all coupling constants are small. First, we find a CEF–phonon bound state reminiscent of the vibronic bound state (VBS) observed in other materials. However, in contrast to an abundance of optical phonons, so far believed to be essential for a VBS, the VBS in [Formula: see text] arises from a comparatively low density of states of acoustic phonons. Second, we find a pronounced anticrossing of the CEF excitations with acoustic phonons at zero magnetic field not observed before. Remarkably, both magneto-elastic excitations are well developed despite considerable damping of the CEFs that arises dominantly by the conduction electrons. Taking together the weak coupling with the simultaneous existence of a distinct VBS and anticrossing in the same material in the presence of damping suggests strongly that similarly well-developed magneto-elastic hybrid excitations must be abundant in a wide range of materials. In turn, our study of the excitation spectra of [Formula: see text] identifies a tractable point of reference in the search for magneto-elastic functionalities and instabilities.