Cargando…
Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice
Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controllin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453526/ https://www.ncbi.nlm.nih.gov/pubmed/30958854 http://dx.doi.org/10.1371/journal.pone.0215028 |
_version_ | 1783409408987889664 |
---|---|
author | Frýdlová, Jana Rogalsky, Daniel W. Truksa, Jaroslav Nečas, Emanuel Vokurka, Martin Krijt, Jan |
author_facet | Frýdlová, Jana Rogalsky, Daniel W. Truksa, Jaroslav Nečas, Emanuel Vokurka, Martin Krijt, Jan |
author_sort | Frýdlová, Jana |
collection | PubMed |
description | Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content; subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen; pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation. |
format | Online Article Text |
id | pubmed-6453526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64535262019-04-19 Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice Frýdlová, Jana Rogalsky, Daniel W. Truksa, Jaroslav Nečas, Emanuel Vokurka, Martin Krijt, Jan PLoS One Research Article Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content; subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen; pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation. Public Library of Science 2019-04-08 /pmc/articles/PMC6453526/ /pubmed/30958854 http://dx.doi.org/10.1371/journal.pone.0215028 Text en © 2019 Frýdlová et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Frýdlová, Jana Rogalsky, Daniel W. Truksa, Jaroslav Nečas, Emanuel Vokurka, Martin Krijt, Jan Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice |
title | Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice |
title_full | Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice |
title_fullStr | Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice |
title_full_unstemmed | Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice |
title_short | Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice |
title_sort | effect of stimulated erythropoiesis on liver smad signaling pathway in iron-overloaded and iron-deficient mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453526/ https://www.ncbi.nlm.nih.gov/pubmed/30958854 http://dx.doi.org/10.1371/journal.pone.0215028 |
work_keys_str_mv | AT frydlovajana effectofstimulatederythropoiesisonliversmadsignalingpathwayinironoverloadedandirondeficientmice AT rogalskydanielw effectofstimulatederythropoiesisonliversmadsignalingpathwayinironoverloadedandirondeficientmice AT truksajaroslav effectofstimulatederythropoiesisonliversmadsignalingpathwayinironoverloadedandirondeficientmice AT necasemanuel effectofstimulatederythropoiesisonliversmadsignalingpathwayinironoverloadedandirondeficientmice AT vokurkamartin effectofstimulatederythropoiesisonliversmadsignalingpathwayinironoverloadedandirondeficientmice AT krijtjan effectofstimulatederythropoiesisonliversmadsignalingpathwayinironoverloadedandirondeficientmice |