Cargando…
Effect of Ginkgo Biloba Extract on N-Methyl-D-Aspartic Acid Receptor Subunit 2B Expression in a Salicylate-Induced Ototoxicity Model
OBJECTIVES. Sodium salicylate (SS) is well known for its ototoxic properties that induce functional and morphological changes in the cochlea and brain. Ginkgo biloba extract (GBE) has been widely used for treatment of various neurodegenerative diseases; however, its effects on salicylate-induced oto...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Otorhinolaryngology-Head and Neck Surgery
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453795/ https://www.ncbi.nlm.nih.gov/pubmed/30360042 http://dx.doi.org/10.21053/ceo.2018.00983 |
Sumario: | OBJECTIVES. Sodium salicylate (SS) is well known for its ototoxic properties that induce functional and morphological changes in the cochlea and brain. Ginkgo biloba extract (GBE) has been widely used for treatment of various neurodegenerative diseases; however, its effects on salicylate-induced ototoxicity remain unclear. Herein, we examined the effects of EGb 761 (EGb), a standard form of GBE, on the plasticity of the N-methyl-D-aspartate receptor subunit 2B (GluN2B) in the inferior colliculus (IC) following SS administration. METHODS. Seven-week-old Sprague Dawley rats (n=24) were randomly allocated to control, SS, EGb, and EGb+SS groups. The SS group received a single intraperitoneal SS injection (350 mg/kg), the EGb group received EGb orally for 5 consecutive days (40 mg/kg), and the EGb+SS group received EGb for 5 consecutive days, followed by an SS injection. The auditory brainstem responses (ABRs) were assessed at baseline and 2 hours after SS administration. GluN2B expression was examined by Western blot and immunohistochemistry. RESULTS. There were no significant differences in ABR threshold shifts among the groups. The expression of the GluN2B protein normalized by which of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was significantly lower in the EGb+SS group, as compared to the SS group (P=0.012). Weak and diffused GluN2B immunoreactivity was detected in the IC neural cells of the EGb+SS group, while those of the SS group exhibited strong and diffused GluN2B positivity. CONCLUSION. EGb may play a role in regulating the GluN2B expression in the IC of salicylate-induced ototoxicity model. |
---|