Cargando…
Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
One of the key shortcomings in the field of nanotechnology risk assessment is the lack of techniques capable of source tracing of nanoparticles (NPs). Silica is the most-produced engineered nanomaterial and also widely present in the natural environment in diverse forms. Here we show that inherent i...
Autores principales: | Yang, Xuezhi, Liu, Xian, Zhang, Aiqian, Lu, Dawei, Li, Gang, Zhang, Qinghua, Liu, Qian, Jiang, Guibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453897/ https://www.ncbi.nlm.nih.gov/pubmed/30962437 http://dx.doi.org/10.1038/s41467-019-09629-5 |
Ejemplares similares
-
Identification of two-dimensional copper signatures in human blood for bladder cancer with machine learning
por: Wang, Weichao, et al.
Publicado: (2022) -
Chemical multi-fingerprinting of exogenous ultrafine particles in human serum and pleural effusion
por: Lu, Dawei, et al.
Publicado: (2020) -
An unknown source of reactor radionuclides in the Baltic Sea revealed by multi-isotope fingerprints
por: Qiao, Jixin, et al.
Publicado: (2021) -
Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources
por: Luxem, Katja E., et al.
Publicado: (2020) -
Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment via tritherapy
por: Huang, Yu-Ya, et al.
Publicado: (2023)