Cargando…

Bad-metal relaxation dynamics in a Fermi lattice gas

Electrical current in conventional metals is carried by electrons that retain their individual character. Bad metals, such as the normal state of some high-temperature superconductors, violate this scenario, and the complete picture for their behavior remains unresolved. Here, we report phenomena co...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, W., McGehee, W. R., Morong, W. N., DeMarco, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453915/
https://www.ncbi.nlm.nih.gov/pubmed/30962438
http://dx.doi.org/10.1038/s41467-019-09526-x
Descripción
Sumario:Electrical current in conventional metals is carried by electrons that retain their individual character. Bad metals, such as the normal state of some high-temperature superconductors, violate this scenario, and the complete picture for their behavior remains unresolved. Here, we report phenomena consistent with bad-metal behaviour in an optical-lattice Hubbard model by measuring the transport lifetime for a mass current excited by stimulated Raman transitions. We demonstrate incompatibility with weak-scattering theory and key characteristics of bad metals: anomalous resistivity scaling consistent with T-linear behavior, the onset of incoherent transport, and the approach to the Mott–Ioffe–Regel limit. Our work demonstrates a direct method for determining the transport lifetime, which is critical to theory but difficult to measure in materials, and exposes minimal ingredients for bad-metal behavior.