Cargando…
_version_ 1783409475809443840
author Johansson, Henrik J.
Socciarelli, Fabio
Vacanti, Nathaniel M.
Haugen, Mads H.
Zhu, Yafeng
Siavelis, Ioannis
Fernandez-Woodbridge, Alejandro
Aure, Miriam R.
Sennblad, Bengt
Vesterlund, Mattias
Branca, Rui M.
Orre, Lukas M.
Huss, Mikael
Fredlund, Erik
Beraki, Elsa
Garred, Øystein
Boekel, Jorrit
Sauer, Torill
Zhao, Wei
Nord, Silje
Höglander, Elen K.
Jans, Daniel C.
Brismar, Hjalmar
Haukaas, Tonje H.
Bathen, Tone F.
Schlichting, Ellen
Naume, Bjørn
Luders, Torben
Borgen, Elin
Kristensen, Vessela N.
Russnes, Hege G.
Lingjærde, Ole Christian
Mills, Gordon B.
Sahlberg, Kristine K.
Børresen-Dale, Anne-Lise
Lehtiö, Janne
author_facet Johansson, Henrik J.
Socciarelli, Fabio
Vacanti, Nathaniel M.
Haugen, Mads H.
Zhu, Yafeng
Siavelis, Ioannis
Fernandez-Woodbridge, Alejandro
Aure, Miriam R.
Sennblad, Bengt
Vesterlund, Mattias
Branca, Rui M.
Orre, Lukas M.
Huss, Mikael
Fredlund, Erik
Beraki, Elsa
Garred, Øystein
Boekel, Jorrit
Sauer, Torill
Zhao, Wei
Nord, Silje
Höglander, Elen K.
Jans, Daniel C.
Brismar, Hjalmar
Haukaas, Tonje H.
Bathen, Tone F.
Schlichting, Ellen
Naume, Bjørn
Luders, Torben
Borgen, Elin
Kristensen, Vessela N.
Russnes, Hege G.
Lingjærde, Ole Christian
Mills, Gordon B.
Sahlberg, Kristine K.
Børresen-Dale, Anne-Lise
Lehtiö, Janne
author_sort Johansson, Henrik J.
collection PubMed
description In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.
format Online
Article
Text
id pubmed-6453966
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64539662019-04-10 Breast cancer quantitative proteome and proteogenomic landscape Johansson, Henrik J. Socciarelli, Fabio Vacanti, Nathaniel M. Haugen, Mads H. Zhu, Yafeng Siavelis, Ioannis Fernandez-Woodbridge, Alejandro Aure, Miriam R. Sennblad, Bengt Vesterlund, Mattias Branca, Rui M. Orre, Lukas M. Huss, Mikael Fredlund, Erik Beraki, Elsa Garred, Øystein Boekel, Jorrit Sauer, Torill Zhao, Wei Nord, Silje Höglander, Elen K. Jans, Daniel C. Brismar, Hjalmar Haukaas, Tonje H. Bathen, Tone F. Schlichting, Ellen Naume, Bjørn Luders, Torben Borgen, Elin Kristensen, Vessela N. Russnes, Hege G. Lingjærde, Ole Christian Mills, Gordon B. Sahlberg, Kristine K. Børresen-Dale, Anne-Lise Lehtiö, Janne Nat Commun Article In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets. Nature Publishing Group UK 2019-04-08 /pmc/articles/PMC6453966/ /pubmed/30962452 http://dx.doi.org/10.1038/s41467-019-09018-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Johansson, Henrik J.
Socciarelli, Fabio
Vacanti, Nathaniel M.
Haugen, Mads H.
Zhu, Yafeng
Siavelis, Ioannis
Fernandez-Woodbridge, Alejandro
Aure, Miriam R.
Sennblad, Bengt
Vesterlund, Mattias
Branca, Rui M.
Orre, Lukas M.
Huss, Mikael
Fredlund, Erik
Beraki, Elsa
Garred, Øystein
Boekel, Jorrit
Sauer, Torill
Zhao, Wei
Nord, Silje
Höglander, Elen K.
Jans, Daniel C.
Brismar, Hjalmar
Haukaas, Tonje H.
Bathen, Tone F.
Schlichting, Ellen
Naume, Bjørn
Luders, Torben
Borgen, Elin
Kristensen, Vessela N.
Russnes, Hege G.
Lingjærde, Ole Christian
Mills, Gordon B.
Sahlberg, Kristine K.
Børresen-Dale, Anne-Lise
Lehtiö, Janne
Breast cancer quantitative proteome and proteogenomic landscape
title Breast cancer quantitative proteome and proteogenomic landscape
title_full Breast cancer quantitative proteome and proteogenomic landscape
title_fullStr Breast cancer quantitative proteome and proteogenomic landscape
title_full_unstemmed Breast cancer quantitative proteome and proteogenomic landscape
title_short Breast cancer quantitative proteome and proteogenomic landscape
title_sort breast cancer quantitative proteome and proteogenomic landscape
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453966/
https://www.ncbi.nlm.nih.gov/pubmed/30962452
http://dx.doi.org/10.1038/s41467-019-09018-y
work_keys_str_mv AT johanssonhenrikj breastcancerquantitativeproteomeandproteogenomiclandscape
AT socciarellifabio breastcancerquantitativeproteomeandproteogenomiclandscape
AT vacantinathanielm breastcancerquantitativeproteomeandproteogenomiclandscape
AT haugenmadsh breastcancerquantitativeproteomeandproteogenomiclandscape
AT zhuyafeng breastcancerquantitativeproteomeandproteogenomiclandscape
AT siavelisioannis breastcancerquantitativeproteomeandproteogenomiclandscape
AT fernandezwoodbridgealejandro breastcancerquantitativeproteomeandproteogenomiclandscape
AT auremiriamr breastcancerquantitativeproteomeandproteogenomiclandscape
AT sennbladbengt breastcancerquantitativeproteomeandproteogenomiclandscape
AT vesterlundmattias breastcancerquantitativeproteomeandproteogenomiclandscape
AT brancaruim breastcancerquantitativeproteomeandproteogenomiclandscape
AT orrelukasm breastcancerquantitativeproteomeandproteogenomiclandscape
AT hussmikael breastcancerquantitativeproteomeandproteogenomiclandscape
AT fredlunderik breastcancerquantitativeproteomeandproteogenomiclandscape
AT berakielsa breastcancerquantitativeproteomeandproteogenomiclandscape
AT garredøystein breastcancerquantitativeproteomeandproteogenomiclandscape
AT boekeljorrit breastcancerquantitativeproteomeandproteogenomiclandscape
AT sauertorill breastcancerquantitativeproteomeandproteogenomiclandscape
AT zhaowei breastcancerquantitativeproteomeandproteogenomiclandscape
AT nordsilje breastcancerquantitativeproteomeandproteogenomiclandscape
AT hoglanderelenk breastcancerquantitativeproteomeandproteogenomiclandscape
AT jansdanielc breastcancerquantitativeproteomeandproteogenomiclandscape
AT brismarhjalmar breastcancerquantitativeproteomeandproteogenomiclandscape
AT haukaastonjeh breastcancerquantitativeproteomeandproteogenomiclandscape
AT bathentonef breastcancerquantitativeproteomeandproteogenomiclandscape
AT schlichtingellen breastcancerquantitativeproteomeandproteogenomiclandscape
AT naumebjørn breastcancerquantitativeproteomeandproteogenomiclandscape
AT breastcancerquantitativeproteomeandproteogenomiclandscape
AT luderstorben breastcancerquantitativeproteomeandproteogenomiclandscape
AT borgenelin breastcancerquantitativeproteomeandproteogenomiclandscape
AT kristensenvesselan breastcancerquantitativeproteomeandproteogenomiclandscape
AT russneshegeg breastcancerquantitativeproteomeandproteogenomiclandscape
AT lingjærdeolechristian breastcancerquantitativeproteomeandproteogenomiclandscape
AT millsgordonb breastcancerquantitativeproteomeandproteogenomiclandscape
AT sahlbergkristinek breastcancerquantitativeproteomeandproteogenomiclandscape
AT børresendaleannelise breastcancerquantitativeproteomeandproteogenomiclandscape
AT lehtiojanne breastcancerquantitativeproteomeandproteogenomiclandscape