Cargando…
Predicting Parkinson's Disease Genes Based on Node2vec and Autoencoder
Identifying genes associated with Parkinson's disease plays an extremely important role in the diagnosis and treatment of Parkinson's disease. In recent years, based on the guilt-by-association hypothesis, many methods have been proposed to predict disease-related genes, but few of these m...
Autores principales: | Peng, Jiajie, Guan, Jiaojiao, Shang, Xuequn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454041/ https://www.ncbi.nlm.nih.gov/pubmed/31001311 http://dx.doi.org/10.3389/fgene.2019.00226 |
Ejemplares similares
-
iCDI-W2vCom: Identifying the Ion Channel–Drug Interaction in Cellular Networking Based on word2vec and node2vec
por: Zheng, Jie, et al.
Publicado: (2021) -
Prediction of Drug–Gene Interaction by Using Metapath2vec
por: Zhu, Siyi, et al.
Publicado: (2018) -
LM-DTI: a tool of predicting drug-target interactions using the node2vec and network path score methods
por: Li, Jianwei, et al.
Publicado: (2023) -
LPIH2V: LncRNA-protein interactions prediction using HIN2Vec based on heterogeneous networks model
por: Wei, Meng-Meng, et al.
Publicado: (2023) -
KG2Vec: A node2vec-based vectorization model for knowledge graph
por: Wang, YueQun, et al.
Publicado: (2021)