Cargando…
Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress
Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal c...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454062/ https://www.ncbi.nlm.nih.gov/pubmed/30959460 http://dx.doi.org/10.1016/j.redox.2019.101181 |
_version_ | 1783409496462196736 |
---|---|
author | Chakraborty, Debapriya Felzen, Vanessa Hiebel, Christof Stürner, Elisabeth Perumal, Natarajan Manicam, Caroline Sehn, Elisabeth Grus, Franz Wolfrum, Uwe Behl, Christian |
author_facet | Chakraborty, Debapriya Felzen, Vanessa Hiebel, Christof Stürner, Elisabeth Perumal, Natarajan Manicam, Caroline Sehn, Elisabeth Grus, Franz Wolfrum, Uwe Behl, Christian |
author_sort | Chakraborty, Debapriya |
collection | PubMed |
description | Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregulated in OxSR cells. The observed adaptive autophagic response was found to be independent of the upstream autophagy regulator mTOR but is accompanied by a significant upregulation of further downstream components of the canonical autophagy network such as Beclin1, WIPI1 and the transmembrane ATG9 proteins. Interestingly, the expression of the HSP70 co-chaperone BAG3, mediator of BAG3-mediated selective macroautophagy and highly relevant for the clearance of aggregated proteins in cells, was found to be increased in OxSR cells that were consequently able to effectively overcome proteotoxic stress. Overexpression of BAG3 in oxidative stress-sensitive HT22 wildtype cells partly established the vesicular phenotype and the enhanced autophagic flux seen in OxSR cells suggesting that BAG3 takes over an important part in the adaptation process. A full proteome analysis demonstrated additional changes in the expression of mitochondrial proteins, metabolic enzymes and different pathway regulators in OxSR cells as consequence of the adaptation to oxidative stress in addition to autophagy-related proteins. Taken together, this analysis revealed a wide variety of pathways and players that act as adaptive response to chronic redox stress in neuronal cells. |
format | Online Article Text |
id | pubmed-6454062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-64540622019-04-19 Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress Chakraborty, Debapriya Felzen, Vanessa Hiebel, Christof Stürner, Elisabeth Perumal, Natarajan Manicam, Caroline Sehn, Elisabeth Grus, Franz Wolfrum, Uwe Behl, Christian Redox Biol Research Paper Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregulated in OxSR cells. The observed adaptive autophagic response was found to be independent of the upstream autophagy regulator mTOR but is accompanied by a significant upregulation of further downstream components of the canonical autophagy network such as Beclin1, WIPI1 and the transmembrane ATG9 proteins. Interestingly, the expression of the HSP70 co-chaperone BAG3, mediator of BAG3-mediated selective macroautophagy and highly relevant for the clearance of aggregated proteins in cells, was found to be increased in OxSR cells that were consequently able to effectively overcome proteotoxic stress. Overexpression of BAG3 in oxidative stress-sensitive HT22 wildtype cells partly established the vesicular phenotype and the enhanced autophagic flux seen in OxSR cells suggesting that BAG3 takes over an important part in the adaptation process. A full proteome analysis demonstrated additional changes in the expression of mitochondrial proteins, metabolic enzymes and different pathway regulators in OxSR cells as consequence of the adaptation to oxidative stress in addition to autophagy-related proteins. Taken together, this analysis revealed a wide variety of pathways and players that act as adaptive response to chronic redox stress in neuronal cells. Elsevier 2019-04-02 /pmc/articles/PMC6454062/ /pubmed/30959460 http://dx.doi.org/10.1016/j.redox.2019.101181 Text en © 2019 Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Chakraborty, Debapriya Felzen, Vanessa Hiebel, Christof Stürner, Elisabeth Perumal, Natarajan Manicam, Caroline Sehn, Elisabeth Grus, Franz Wolfrum, Uwe Behl, Christian Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
title | Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
title_full | Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
title_fullStr | Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
title_full_unstemmed | Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
title_short | Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
title_sort | enhanced autophagic-lysosomal activity and increased bag3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454062/ https://www.ncbi.nlm.nih.gov/pubmed/30959460 http://dx.doi.org/10.1016/j.redox.2019.101181 |
work_keys_str_mv | AT chakrabortydebapriya enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT felzenvanessa enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT hiebelchristof enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT sturnerelisabeth enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT perumalnatarajan enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT manicamcaroline enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT sehnelisabeth enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT grusfranz enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT wolfrumuwe enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress AT behlchristian enhancedautophagiclysosomalactivityandincreasedbag3mediatedselectivemacroautophagyasadaptiveresponseofneuronalcellstochronicoxidativestress |