Cargando…
Identifying Disease-Gene Associations With Graph-Regularized Manifold Learning
Complex diseases are known to be associated with disease genes. Uncovering disease-gene associations is critical for diagnosis, treatment, and prevention of diseases. Computational algorithms which effectively predict candidate disease-gene associations prior to experimental proof can greatly reduce...
Autores principales: | Luo, Ping, Xiao, Qianghua, Wei, Pi-Jing, Liao, Bo, Wu, Fang-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454152/ https://www.ncbi.nlm.nih.gov/pubmed/31001321 http://dx.doi.org/10.3389/fgene.2019.00270 |
Ejemplares similares
-
Causal Learning via Manifold Regularization
por: Hill, Steven M., et al.
Publicado: (2019) -
A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering
por: Zhu, Rong, et al.
Publicado: (2017) -
Semi-supervised multi-label classification using an extended graph-based manifold regularization
por: Li, Ding, et al.
Publicado: (2022) -
Predicting lncRNA–Protein Interaction With Weighted Graph-Regularized Matrix Factorization
por: Sun, Xibo, et al.
Publicado: (2021) -
EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data
por: Zhu, Yuan, et al.
Publicado: (2020)