Cargando…
A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records
BACKGROUND: The Named Entity Recognition (NER) task as a key step in the extraction of health information, has encountered many challenges in Chinese Electronic Medical Records (EMRs). Firstly, the casual use of Chinese abbreviations and doctors’ personal style may result in multiple expressions of...
Autores principales: | Cai, Xiaoling, Dong, Shoubin, Hu, Jinlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454585/ https://www.ncbi.nlm.nih.gov/pubmed/30961622 http://dx.doi.org/10.1186/s12911-019-0762-7 |
Ejemplares similares
-
An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
por: Li, Luqi, et al.
Publicado: (2019) -
Named Entity Recognition in Electronic Health Records: A Methodological Review
por: Durango, María C., et al.
Publicado: (2023) -
Clinical Named Entity Recognition from Chinese Electronic Medical Records Based on Deep Learning Pretraining
por: Gong, Lejun, et al.
Publicado: (2020) -
A hybrid approach for named entity recognition in Chinese electronic medical record
por: Ji, Bin, et al.
Publicado: (2019) -
Incorporating rich background knowledge for gene named entity classification and recognition
por: Li, Yanpeng, et al.
Publicado: (2009)