Cargando…
Time-sensitive clinical concept embeddings learned from large electronic health records
BACKGROUND: Learning distributional representation of clinical concepts (e.g., diseases, drugs, and labs) is an important research area of deep learning in the medical domain. However, many existing relevant methods do not consider temporal dependencies along the longitudinal sequence of a patient’s...
Autores principales: | Xiang, Yang, Xu, Jun, Si, Yuqi, Li, Zhiheng, Rasmy, Laila, Zhou, Yujia, Tiryaki, Firat, Li, Fang, Zhang, Yaoyun, Wu, Yonghui, Jiang, Xiaoqian, Zheng, Wenjin Jim, Zhi, Degui, Tao, Cui, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454598/ https://www.ncbi.nlm.nih.gov/pubmed/30961579 http://dx.doi.org/10.1186/s12911-019-0766-3 |
Ejemplares similares
-
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction
por: Rasmy, Laila, et al.
Publicado: (2021) -
Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study
por: Xiang, Yang, et al.
Publicado: (2020) -
428. Deep-Learning Based Predictive Model for Patients with Positive MRSA Cultures Using Time-Series Electronic Health Records
por: Nigo, Masayuki, et al.
Publicado: (2022) -
Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data
por: Rasmy, Laila, et al.
Publicado: (2022) -
Parsing clinical text using the state-of-the-art deep learning based parsers: a systematic comparison
por: Zhang, Yaoyun, et al.
Publicado: (2019)