Cargando…
Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units
BACKGROUND: Reinforcement learning (RL) provides a promising technique to solve complex sequential decision making problems in health care domains. To ensure such applications, an explicit reward function encoding domain knowledge should be specified beforehand to indicate the goal of tasks. However...
Autores principales: | Yu, Chao, Liu, Jiming, Zhao, Hongyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454602/ https://www.ncbi.nlm.nih.gov/pubmed/30961594 http://dx.doi.org/10.1186/s12911-019-0763-6 |
Ejemplares similares
-
Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units
por: Yu, Chao, et al.
Publicado: (2020) -
Age related inverse dose relation of sedatives and analgesics in the intensive care unit
por: Mukhopadhyay, Amartya, et al.
Publicado: (2017) -
Sedation and memories of patients subjected to mechanical ventilation in
an intensive care unit
por: da Costa, Jaquilene Barreto, et al.
Publicado: (2014) -
Effect of Sedation Regimen on Weaning from Mechanical Ventilation in the Intensive Care Unit
por: Nunes, Silvia L., et al.
Publicado: (2018) -
Sedation of mechanically ventilated adults in intensive care unit: a network meta-analysis
por: Zhang, Zhongheng, et al.
Publicado: (2017)