Cargando…
Incorporating causal factors into reinforcement learning for dynamic treatment regimes in HIV
BACKGROUND: Reinforcement learning (RL) provides a promising technique to solve complex sequential decision making problems in health care domains. However, existing studies simply apply naive RL algorithms in discovering optimal treatment strategies for a targeted problem. This kind of direct appli...
Autores principales: | Yu, Chao, Dong, Yinzhao, Liu, Jiming, Ren, Guoqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454675/ https://www.ncbi.nlm.nih.gov/pubmed/30961606 http://dx.doi.org/10.1186/s12911-019-0755-6 |
Ejemplares similares
-
Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units
por: Yu, Chao, et al.
Publicado: (2020) -
Statistical methods for dynamic treatment regimes: reinforcement learning, causal inference, and personalized medicine
por: Chakraborty, Bibhas, et al.
Publicado: (2013) -
The use of prognostic scores for causal inference with general treatment regimes
por: Nguyen, Tri‐Long, et al.
Publicado: (2019) -
Information Causality in the Quantum and Post-Quantum Regime
por: Ringbauer, Martin, et al.
Publicado: (2014) -
Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units
por: Yu, Chao, et al.
Publicado: (2019)