Cargando…
Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization
BACKGROUND: Because drug–drug interactions (DDIs) may cause adverse drug reactions or contribute to complex-disease treatments, it is important to identify DDIs before multiple-drug medications are prescribed. As the alternative of high-cost experimental identifications, computational approaches pro...
Autores principales: | Shi, Jian-Yu, Mao, Kui-Tao, Yu, Hui, Yiu, Siu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454721/ https://www.ncbi.nlm.nih.gov/pubmed/30963300 http://dx.doi.org/10.1186/s13321-019-0352-9 |
Ejemplares similares
-
Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization
por: Yu, Hui, et al.
Publicado: (2018) -
TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
A unified solution for different scenarios of predicting drug-target interactions via triple matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013) -
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020)