Cargando…
Correction: Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals
Autores principales: | Jeong, Eugene, Park, Namgi, Choi, Young, Park, Rae Woong, Yoon, Dukyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456182/ https://www.ncbi.nlm.nih.gov/pubmed/30964930 http://dx.doi.org/10.1371/journal.pone.0215344 |
Ejemplares similares
-
Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals
por: Jeong, Eugene, et al.
Publicado: (2018) -
Drug Repositioning Using Temporal Trajectories of Accompanying Comorbidities in Diabetes Mellitus
por: Park, Namgi, et al.
Publicado: (2022) -
Standard-based comprehensive detection of adverse drug reaction signals from nursing statements and laboratory results in electronic health records
por: Lee, Suehyun, et al.
Publicado: (2017) -
Temporal trajectories of accompanying comorbidities in patients with type 2 diabetes: a Korean nationwide observational study
por: Jeong, Eugene, et al.
Publicado: (2020) -
Machine Learning Approach for Active Vaccine Safety Monitoring
por: Kim, Yujeong, et al.
Publicado: (2021)