Cargando…

Long-Term Feeding of Soy Protein Attenuates Choline Deficient-Induced Adverse Effects in Wild Type Mice and Prohibitin 1 Deficient Mice Response More Sensitively

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, however the exact cause of NAFLD remains unknown. Methionine, an essential amino acid, is the first limiting amino acid of soy protein, and its deficiency is suggested to cause hepatocyte damage and NAFLD. The object...

Descripción completa

Detalles Bibliográficos
Autores principales: Heo, Gieun, Ko, Kwang Suk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Food Science and Nutrition 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456240/
https://www.ncbi.nlm.nih.gov/pubmed/31008094
http://dx.doi.org/10.3746/pnf.2019.24.1.32
Descripción
Sumario:Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, however the exact cause of NAFLD remains unknown. Methionine, an essential amino acid, is the first limiting amino acid of soy protein, and its deficiency is suggested to cause hepatocyte damage and NAFLD. The objective of this study is to examine the changes in NAFLD susceptibility with soy protein consumption and deterioration due to prohibitin 1 (PHB1) deficiency, an important protein in hepatic mitochondrial function. In this study, liver-specific phb1 +/− mice and wild-type mice were fed a normal diet, choline-deficient diet (CDD), or soy protein diet without choline (SPD) for 16 weeks. Using hematoxylin and eosin staining, we showed that SPD attenuates symptoms of hepatocyte damage and lipid accumulation induced by CDD in mouse liver. The liver damage in mice fed the SPD was alleviated by decreasing lipogenic markers and by increasing anti-inflammatory markers. Furthermore, mRNA expression of genes involved in hepatic methionine metabolism was significantly lower in liver-specific phb1 +/− mice fed with a SPD compared with wild-type mice fed with a SPD. These data suggest a CDD can cause non-alcohol related liver damage, which can be attenuated by a SPD in wild-type mice. These phenomena were not observed in liver-specific phb1 +/− mice. It may therefore be concluded that SPD attenuates CDD-induced liver damage in wild-type mice, and that PHB1 deficiency blocks the beneficial effects of SPD against CDD-induced liver damage.