Cargando…
Weight statistics controls dynamics in recurrent neural networks
Recurrent neural networks are complex non-linear systems, capable of ongoing activity in the absence of driving inputs. The dynamical properties of these systems, in particular their long-time attractor states, are determined on the microscopic level by the connection strengths w(ij) between the ind...
Autores principales: | Krauss, Patrick, Schuster, Marc, Dietrich, Verena, Schilling, Achim, Schulze, Holger, Metzner, Claus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456246/ https://www.ncbi.nlm.nih.gov/pubmed/30964879 http://dx.doi.org/10.1371/journal.pone.0214541 |
Ejemplares similares
-
Dynamics and Information Import in Recurrent Neural Networks
por: Metzner, Claus, et al.
Publicado: (2022) -
Sleep as a random walk: a super-statistical analysis of EEG data across sleep stages
por: Metzner, Claus, et al.
Publicado: (2021) -
Analysis and visualization of sleep stages based on deep neural networks
por: Krauss, Patrick, et al.
Publicado: (2021) -
Analysis of Structure and Dynamics in Three-Neuron Motifs
por: Krauss, Patrick, et al.
Publicado: (2019) -
A New Statistical Approach for the Evaluation of Gap-prepulse Inhibition of the Acoustic Startle Reflex (GPIAS) for Tinnitus Assessment
por: Schilling, Achim, et al.
Publicado: (2017)