Cargando…
Classification of high dimensional biomedical data based on feature selection using redundant removal
High dimensional biomedical data contain tens of thousands of features, accurate and effective identification of the core features in these data can be used to assist diagnose related diseases. However, there are often a large number of irrelevant or redundant features in biomedical data, which seri...
Autores principales: | Zhang, Bingtao, Cao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456288/ https://www.ncbi.nlm.nih.gov/pubmed/30964868 http://dx.doi.org/10.1371/journal.pone.0214406 |
Ejemplares similares
-
Feature Selection for High-Dimensional and Imbalanced Biomedical Data Based on Robust Correlation Based Redundancy and Binary Grasshopper Optimization Algorithm
por: Abdulrauf Sharifai, Garba, et al.
Publicado: (2020) -
Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA
por: Dai, Yongqiang, et al.
Publicado: (2022) -
Information Theory-Based Feature Selection: Minimum Distribution Similarity with Removed Redundancy
por: Zhang, Yu, et al.
Publicado: (2020) -
Relevant and Non-Redundant Feature Selection for Cancer Classification and Subtype Detection
por: Rana, Pratip, et al.
Publicado: (2021) -
Supervised redundant feature detection for tumor classification
por: Zeng, Xue-Qiang, et al.
Publicado: (2014)