Cargando…
Measurement of carrier lifetime in micron-scaled materials using resonant microwave circuits
The measurement of minority carrier lifetimes is vital to determining the material quality and operational bandwidth of a broad range of optoelectronic devices. Typically, these measurements are made by recording the temporal decay of a carrier-concentration-dependent material property following pul...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456730/ https://www.ncbi.nlm.nih.gov/pubmed/30967546 http://dx.doi.org/10.1038/s41467-019-09602-2 |
Sumario: | The measurement of minority carrier lifetimes is vital to determining the material quality and operational bandwidth of a broad range of optoelectronic devices. Typically, these measurements are made by recording the temporal decay of a carrier-concentration-dependent material property following pulsed optical excitation. Such approaches require some combination of efficient emission from the material under test, specialized collection optics, large sample areas, spatially uniform excitation, and/or the fabrication of ohmic contacts, depending on the technique used. In contrast, here we introduce a technique that provides electrical readout of minority carrier lifetimes using a passive microwave resonator circuit. We demonstrate >10(5) improvement in sensitivity, compared with traditional photoemission decay experiments and the ability to measure carrier dynamics in micron-scale volumes, much smaller than is possible with other techniques. The approach presented is applicable to a wide range of 2D, micro-, or nano-scaled materials, as well as weak emitters or non-radiative materials. |
---|