Cargando…
A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clust...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456731/ https://www.ncbi.nlm.nih.gov/pubmed/30967541 http://dx.doi.org/10.1038/s41467-019-09639-3 |
_version_ | 1783409798545408000 |
---|---|
author | Sun, Zhe Chen, Li Xin, Hongyi Jiang, Yale Huang, Qianhui Cillo, Anthony R. Tabib, Tracy Kolls, Jay K. Bruno, Tullia C. Lafyatis, Robert Vignali, Dario A. A. Chen, Kong Ding, Ying Hu, Ming Chen, Wei |
author_facet | Sun, Zhe Chen, Li Xin, Hongyi Jiang, Yale Huang, Qianhui Cillo, Anthony R. Tabib, Tracy Kolls, Jay K. Bruno, Tullia C. Lafyatis, Robert Vignali, Dario A. A. Chen, Kong Ding, Ying Hu, Ming Chen, Wei |
author_sort | Sun, Zhe |
collection | PubMed |
description | The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clustering methods, there are few tailored methods for population-scale scRNA-seq studies. Here, we develop a Bayesian mixture model for single-cell sequencing (BAMM-SC) method to cluster scRNA-seq data from multiple individuals simultaneously. BAMM-SC takes raw count data as input and accounts for data heterogeneity and batch effect among multiple individuals in a unified Bayesian hierarchical model framework. Results from extensive simulation studies and applications of BAMM-SC to in-house experimental scRNA-seq datasets using blood, lung and skin cells from humans or mice demonstrate that BAMM-SC outperformed existing clustering methods with considerable improved clustering accuracy, particularly in the presence of heterogeneity among individuals. |
format | Online Article Text |
id | pubmed-6456731 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64567312019-04-11 A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies Sun, Zhe Chen, Li Xin, Hongyi Jiang, Yale Huang, Qianhui Cillo, Anthony R. Tabib, Tracy Kolls, Jay K. Bruno, Tullia C. Lafyatis, Robert Vignali, Dario A. A. Chen, Kong Ding, Ying Hu, Ming Chen, Wei Nat Commun Article The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clustering methods, there are few tailored methods for population-scale scRNA-seq studies. Here, we develop a Bayesian mixture model for single-cell sequencing (BAMM-SC) method to cluster scRNA-seq data from multiple individuals simultaneously. BAMM-SC takes raw count data as input and accounts for data heterogeneity and batch effect among multiple individuals in a unified Bayesian hierarchical model framework. Results from extensive simulation studies and applications of BAMM-SC to in-house experimental scRNA-seq datasets using blood, lung and skin cells from humans or mice demonstrate that BAMM-SC outperformed existing clustering methods with considerable improved clustering accuracy, particularly in the presence of heterogeneity among individuals. Nature Publishing Group UK 2019-04-09 /pmc/articles/PMC6456731/ /pubmed/30967541 http://dx.doi.org/10.1038/s41467-019-09639-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sun, Zhe Chen, Li Xin, Hongyi Jiang, Yale Huang, Qianhui Cillo, Anthony R. Tabib, Tracy Kolls, Jay K. Bruno, Tullia C. Lafyatis, Robert Vignali, Dario A. A. Chen, Kong Ding, Ying Hu, Ming Chen, Wei A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
title | A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
title_full | A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
title_fullStr | A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
title_full_unstemmed | A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
title_short | A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
title_sort | bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456731/ https://www.ncbi.nlm.nih.gov/pubmed/30967541 http://dx.doi.org/10.1038/s41467-019-09639-3 |
work_keys_str_mv | AT sunzhe abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT chenli abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT xinhongyi abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT jiangyale abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT huangqianhui abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT cilloanthonyr abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT tabibtracy abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT kollsjayk abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT brunotulliac abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT lafyatisrobert abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT vignalidarioaa abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT chenkong abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT dingying abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT huming abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT chenwei abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT sunzhe bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT chenli bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT xinhongyi bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT jiangyale bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT huangqianhui bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT cilloanthonyr bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT tabibtracy bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT kollsjayk bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT brunotulliac bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT lafyatisrobert bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT vignalidarioaa bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT chenkong bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT dingying bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT huming bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies AT chenwei bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies |