Cargando…

A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies

The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clust...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Zhe, Chen, Li, Xin, Hongyi, Jiang, Yale, Huang, Qianhui, Cillo, Anthony R., Tabib, Tracy, Kolls, Jay K., Bruno, Tullia C., Lafyatis, Robert, Vignali, Dario A. A., Chen, Kong, Ding, Ying, Hu, Ming, Chen, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456731/
https://www.ncbi.nlm.nih.gov/pubmed/30967541
http://dx.doi.org/10.1038/s41467-019-09639-3
_version_ 1783409798545408000
author Sun, Zhe
Chen, Li
Xin, Hongyi
Jiang, Yale
Huang, Qianhui
Cillo, Anthony R.
Tabib, Tracy
Kolls, Jay K.
Bruno, Tullia C.
Lafyatis, Robert
Vignali, Dario A. A.
Chen, Kong
Ding, Ying
Hu, Ming
Chen, Wei
author_facet Sun, Zhe
Chen, Li
Xin, Hongyi
Jiang, Yale
Huang, Qianhui
Cillo, Anthony R.
Tabib, Tracy
Kolls, Jay K.
Bruno, Tullia C.
Lafyatis, Robert
Vignali, Dario A. A.
Chen, Kong
Ding, Ying
Hu, Ming
Chen, Wei
author_sort Sun, Zhe
collection PubMed
description The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clustering methods, there are few tailored methods for population-scale scRNA-seq studies. Here, we develop a Bayesian mixture model for single-cell sequencing (BAMM-SC) method to cluster scRNA-seq data from multiple individuals simultaneously. BAMM-SC takes raw count data as input and accounts for data heterogeneity and batch effect among multiple individuals in a unified Bayesian hierarchical model framework. Results from extensive simulation studies and applications of BAMM-SC to in-house experimental scRNA-seq datasets using blood, lung and skin cells from humans or mice demonstrate that BAMM-SC outperformed existing clustering methods with considerable improved clustering accuracy, particularly in the presence of heterogeneity among individuals.
format Online
Article
Text
id pubmed-6456731
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64567312019-04-11 A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies Sun, Zhe Chen, Li Xin, Hongyi Jiang, Yale Huang, Qianhui Cillo, Anthony R. Tabib, Tracy Kolls, Jay K. Bruno, Tullia C. Lafyatis, Robert Vignali, Dario A. A. Chen, Kong Ding, Ying Hu, Ming Chen, Wei Nat Commun Article The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clustering methods, there are few tailored methods for population-scale scRNA-seq studies. Here, we develop a Bayesian mixture model for single-cell sequencing (BAMM-SC) method to cluster scRNA-seq data from multiple individuals simultaneously. BAMM-SC takes raw count data as input and accounts for data heterogeneity and batch effect among multiple individuals in a unified Bayesian hierarchical model framework. Results from extensive simulation studies and applications of BAMM-SC to in-house experimental scRNA-seq datasets using blood, lung and skin cells from humans or mice demonstrate that BAMM-SC outperformed existing clustering methods with considerable improved clustering accuracy, particularly in the presence of heterogeneity among individuals. Nature Publishing Group UK 2019-04-09 /pmc/articles/PMC6456731/ /pubmed/30967541 http://dx.doi.org/10.1038/s41467-019-09639-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sun, Zhe
Chen, Li
Xin, Hongyi
Jiang, Yale
Huang, Qianhui
Cillo, Anthony R.
Tabib, Tracy
Kolls, Jay K.
Bruno, Tullia C.
Lafyatis, Robert
Vignali, Dario A. A.
Chen, Kong
Ding, Ying
Hu, Ming
Chen, Wei
A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
title A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
title_full A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
title_fullStr A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
title_full_unstemmed A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
title_short A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
title_sort bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456731/
https://www.ncbi.nlm.nih.gov/pubmed/30967541
http://dx.doi.org/10.1038/s41467-019-09639-3
work_keys_str_mv AT sunzhe abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT chenli abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT xinhongyi abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT jiangyale abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT huangqianhui abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT cilloanthonyr abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT tabibtracy abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT kollsjayk abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT brunotulliac abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT lafyatisrobert abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT vignalidarioaa abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT chenkong abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT dingying abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT huming abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT chenwei abayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT sunzhe bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT chenli bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT xinhongyi bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT jiangyale bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT huangqianhui bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT cilloanthonyr bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT tabibtracy bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT kollsjayk bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT brunotulliac bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT lafyatisrobert bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT vignalidarioaa bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT chenkong bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT dingying bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT huming bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies
AT chenwei bayesianmixturemodelforclusteringdropletbasedsinglecelltranscriptomicdatafrompopulationstudies