Cargando…
A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
The recently developed droplet-based single-cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clust...
Autores principales: | Sun, Zhe, Chen, Li, Xin, Hongyi, Jiang, Yale, Huang, Qianhui, Cillo, Anthony R., Tabib, Tracy, Kolls, Jay K., Bruno, Tullia C., Lafyatis, Robert, Vignali, Dario A. A., Chen, Kong, Ding, Ying, Hu, Ming, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456731/ https://www.ncbi.nlm.nih.gov/pubmed/30967541 http://dx.doi.org/10.1038/s41467-019-09639-3 |
Ejemplares similares
-
BREM-SC: a bayesian random effects mixture model for joint clustering single cell multi-omics data
por: Wang, Xinjun, et al.
Publicado: (2020) -
Consensus clustering for Bayesian mixture models
por: Coleman, Stephen, et al.
Publicado: (2022) -
Single-cell transcriptome conservation in a comparative analysis of fresh and cryopreserved human skin tissue: pilot in localized scleroderma
por: Mirizio, Emily, et al.
Publicado: (2020) -
Correction to: Single-cell transcriptome conservation in a comparative analysis of fresh and cryopreserved human skin tissue: pilot in localized scleroderma
por: Mirizio, Emily, et al.
Publicado: (2021) -
Single-Cell Transcriptome Analysis Identifies Subclusters with Inflammatory Fibroblast Responses in Localized Scleroderma
por: Werner, Giffin, et al.
Publicado: (2023)