Cargando…
Cancer Genetic Network Inference Using Gaussian Graphical Models
The Cancer Genome Atlas (TCGA) provides a rich resource that can be used to understand how genes interact in cancer cells and has collected RNA-Seq gene expression data for many types of human cancer. However, mining the data to uncover the hidden gene-interaction patterns remains a challenge. Gauss...
Autores principales: | Zhao, Haitao, Duan, Zhong-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456846/ https://www.ncbi.nlm.nih.gov/pubmed/31007526 http://dx.doi.org/10.1177/1177932219839402 |
Ejemplares similares
-
An Integrated Approach of Learning Genetic Networks From Genome-Wide
Gene Expression Data Using Gaussian Graphical Model and Monte Carlo
Method
por: Zhao, Haitao, et al.
Publicado: (2023) -
FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks
por: Wang, Ting, et al.
Publicado: (2016) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019) -
A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model
por: He, Hao, et al.
Publicado: (2019) -
Gene Systems Network Inferred from Expression Profiles in Hepatocellular Carcinogenesis by Graphical Gaussian Model
por: Aburatani, Sachiyo, et al.
Publicado: (2007)