Cargando…
Explore mediated co-varying dynamics in microbial community using integrated local similarity and liquid association analysis
BACKGROUND: Discovering the key microbial species and environmental factors of microbial community and characterizing their relationships with other members are critical to ecosystem studies. The microbial co-occurrence patterns across a variety of environmental settings have been extensively charac...
Autores principales: | Ai, Dongmei, Li, Xiaoxin, Pan, Hongfei, Chen, Jiamin, Cram, Jacob A., Xia, Li C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456937/ https://www.ncbi.nlm.nih.gov/pubmed/30967122 http://dx.doi.org/10.1186/s12864-019-5469-8 |
Ejemplares similares
-
Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates
por: Xia, Li C, et al.
Publicado: (2011) -
Association network analysis identifies enzymatic components of gut microbiota that significantly differ between colorectal cancer patients and healthy controls
por: Ai, Dongmei, et al.
Publicado: (2019) -
Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder
por: Ai, Dongmei, et al.
Publicado: (2020) -
Using Decision Tree Aggregation with Random Forest Model to Identify Gut Microbes Associated with Colorectal Cancer
por: Ai, Dongmei, et al.
Publicado: (2019) -
Identifying Gut Microbiota Associated With Colorectal Cancer Using a Zero-Inflated Lognormal Model
por: Ai, Dongmei, et al.
Publicado: (2019)